
S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).
Chapter 19. Partial Differential

Equations

19.0 Introduction

The numerical treatment of partial differential equations is, by itself, a vast
subject. Partial differential equations are at the heart of many, if not most,
computer analyses or simulations of continuous physical systems, such as fluids,
electromagnetic fields, the human body, and so on. The intent of this chapter is to
give the briefest possible useful introduction. Ideally, there would be an entire second
volume of Numerical Recipes dealing with partial differential equations alone. (The
references [1-4] provide, of course, available alternatives.)

In most mathematics books, partial differential equations (PDEs) are classified
into the three categories, hyperbolic, parabolic, and elliptic, on the basis of their
characteristics, or curves of information propagation. The prototypical example of
a hyperbolic equation is the one-dimensional wave equation

∂2u

∂t2
= v2 ∂

2u

∂x2
(19.0.1)

where v = constant is the velocity of wave propagation. The prototypical parabolic
equation is the diffusion equation

∂u

∂t
=

∂

∂x

(
D
∂u

∂x

)
(19.0.2)

where D is the diffusion coefficient. The prototypical elliptic equation is the
Poisson equation

∂2u

∂x2
+
∂2u

∂y2
= ρ(x, y) (19.0.3)

where the source term ρ is given. If the source term is equal to zero, the equation
is Laplace’s equation.

From a computational point of view, the classification into these three canonical
types is not very meaningful — or at least not as important as some other essential
distinctions. Equations (19.0.1) and (19.0.2) both define initial value or Cauchy
problems: If information on u (perhaps including time derivative information) is

818

19.0 Introduction 819

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

boundary

conditions

initial values
(a)

boundary

values

(b)

Figure 19.0.1. Initial value problem (a) and boundary value problem (b) are contrasted. In (a) initial
values are given on one “time slice,” and it is desired to advance the solution in time, computing
successive rows of open dots in the direction shown by the arrows. Boundary conditions at the left and
right edges of each row (⊗) must also be supplied, but only one row at a time. Only one, or a few,
previous rows need be maintained in memory. In (b), boundary values are specified around the edge of
a grid, and an iterative process is employed to find the values of all the internal points (open circles).
All grid points must be maintained in memory.

given at some initial time t0 for all x, then the equations describe how u(x, t)
propagates itself forward in time. In other words, equations (19.0.1) and (19.0.2)
describe time evolution. The goal of a numerical code should be to track that time
evolution with some desired accuracy.

By contrast, equation (19.0.3) directs us to find a single “static” function u(x, y)
which satisfies the equation within some (x, y) region of interest, and which — one
must also specify — has some desired behavior on the boundary of the region of
interest. These problems are called boundary value problems. In general it is not

820 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

possible stably to just “integrate in from the boundary” in the same sense that an
initial value problem can be “integrated forward in time.” Therefore, the goal of a
numerical code is somehow to converge on the correct solution everywhere at once.

This, then, is the most important classification from a computational point
of view: Is the problem at hand an initial value (time evolution) problem? or
is it a boundary value (static solution) problem? Figure 19.0.1 emphasizes the
distinction. Notice that while the italicized terminology is standard, the terminology
in parentheses is a much better description of the dichotomy from a computational
perspective. The subclassification of initial value problems into parabolic and
hyperbolic is much less important because (i) many actual problems are of a mixed
type, and (ii) as we will see, most hyperbolic problems get parabolic pieces mixed
into them by the time one is discussing practical computational schemes.

Initial Value Problems

An initial value problem is defined by answers to the following questions:
• What are the dependent variables to be propagated forward in time?
• What is the evolution equation for each variable? Usually the evolution

equations will all be coupled, with more than one dependent variable
appearing on the right-hand side of each equation.

• What is the highest time derivative that occurs in each variable’s evolution
equation? If possible, this time derivative should be put alone on the
equation’s left-hand side. Not only the value of a variable, but also the
value of all its time derivatives — up to the highest one — must be
specified to define the evolution.

• What special equations (boundary conditions) govern the evolution in time
of points on the boundary of the spatial region of interest? Examples:
Dirichlet conditions specify the values of the boundary points as a function
of time; Neumann conditions specify the values of the normal gradients on
the boundary; outgoing-wave boundary conditions are just what they say.

Sections 19.1–19.3 of this chapter deal with initial value problems of several
different forms. We make no pretence of completeness, but rather hope to convey a
certain amount of generalizable information through a few carefully chosen model
examples. These examples will illustrate an important point: One’s principal
computational concern must be the stability of the algorithm. Many reasonable-
looking algorithms for initial value problems just don’t work — they are numerically
unstable.

Boundary Value Problems

The questions that define a boundary value problem are:
• What are the variables?
• What equations are satisfied in the interior of the region of interest?
• What equations are satisfied by points on the boundary of the region of

interest? (Here Dirichlet and Neumann conditions are possible choices for
ellipticsecond-order equations, but more complicated boundary conditions
can also be encountered.)

19.0 Introduction 821

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

In contrast to initial value problems, stability is relatively easy to achieve
for boundary value problems. Thus, the efficiency of the algorithms, both in
computational load and storage requirements, becomes the principal concern.

Because all the conditions on a boundary value problem must be satisfied
“simultaneously,” these problems usually boil down, at least conceptually, to the
solution of large numbers of simultaneous algebraic equations. When such equations
are nonlinear, they are usually solved by linearization and iteration; so without much
loss of generality we can view the problem as being the solution of special, large
linear sets of equations.

As an example, one which we will refer to in §§19.4–19.6 as our “model
problem,” let us consider the solution of equation (19.0.3) by the finite-difference
method. We represent the function u(x, y) by its values at the discrete set of points

xj = x0 + j∆, j = 0, 1, ..., J

yl = y0 + l∆, l = 0, 1, ..., L
(19.0.4)

where ∆ is the grid spacing. From now on, we will write uj,l for u(xj, yl), and
ρj,l for ρ(xj , yl). For (19.0.3) we substitute a finite-difference representation (see
Figure 19.0.2),

uj+1,l − 2uj,l + uj−1,l

∆2
+
uj,l+1 − 2uj,l + uj,l−1

∆2
= ρj,l (19.0.5)

or equivalently

uj+1,l + uj−1,l + uj,l+1 + uj,l−1 − 4uj,l = ∆2ρj,l (19.0.6)

To write this system of linear equations in matrix form we need to make a
vector out of u. Let us number the two dimensions of grid points in a single
one-dimensional sequence by defining

i ≡ j(L + 1) + l for j = 0, 1, ..., J, l = 0, 1, ..., L (19.0.7)

In other words, i increases most rapidly along the columns representing y values.
Equation (19.0.6) now becomes

ui+L+1 + ui−(L+1) + ui+1 + ui−1 − 4ui = ∆2ρi (19.0.8)

This equation holds only at the interior points j = 1, 2, ..., J − 1; l = 1, 2, ...,
L − 1.

The points where

j = 0

j = J

l = 0

l = L

[i.e., i = 0, ..., L]

[i.e., i = J(L + 1), ..., J(L+ 1) + L]

[i.e., i = 0, L+ 1, ..., J(L+ 1)]

[i.e., i = L, L+ 1 + L, ..., J(L+ 1) + L]

(19.0.9)

822 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

yL

∆

y1

y0
x0 xJx1 . . .

∆

A

B

Figure 19.0.2. Finite-difference representation of a second-order elliptic equation on a two-dimensional
grid. The second derivatives at the pointA are evaluated using the points to whichA is shown connected.
The second derivatives at point B are evaluated using the connected points and also using “right-hand
side” boundary information, shown schematically as ⊗.

are boundary points where either u or its derivative has been specified. If we pull
all this “known” information over to the right-hand side of equation (19.0.8), then
the equation takes the form

A · u = b (19.0.10)

where A has the form shown in Figure 19.0.3. The matrix A is called “tridiagonal
with fringes.” A general linear second-order elliptic equation

a(x, y)
∂2u

∂x2
+ b(x, y)

∂u

∂x
+ c(x, y)

∂2u

∂y2
+ d(x, y)

∂u

∂y

+ e(x, y)
∂2u

∂x∂y
+ f(x, y)u = g(x, y)

(19.0.11)

will lead to a matrix of similar structure except that the nonzero entries will not
be constants.

As a rough classification, there are three different approaches to the solution
of equation (19.0.10), not all applicable in all cases: relaxation methods, “rapid”
methods (e.g., Fourier methods), and direct matrix methods.

19.0 Introduction 823

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

−4

1

1

−4

•

1

•

•

•

•

1

•

−4

1

1

−4

J + 1

blocks

in
cr

ea
si

ng
 i

increasing j

J + 1 blocks

1

1

•

•

•

•

−4

1

1

−4

•

1

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1

•

−4

1

1

−4

−4

1

1

−4

•

1

•

•

•

•

1

•

−4

1

1

−4

•

•

•

•

•

•

1

•

•

•

•

1

•

•

•

•

1

1

1

1

•

•

•

1

•

•

•

•

•

•

1

1

•

•

•

•

•

•

•

•

1

1

each

block

(L + 1) ×

(L + 1)

Figure 19.0.3. Matrix structure derived from a second-order elliptic equation (here equation 19.0.6). All
elements not shown are zero. The matrix has diagonal blocks that are themselves tridiagonal, and sub-
and super-diagonal blocks that are diagonal. This form is called “tridiagonal with fringes.” A matrix this
sparse would never be stored in its full form as shown here.

Relaxation methods make immediate use of the structure of the sparse matrix
A. The matrix is split into two parts

A = E− F (19.0.12)

where E is easily invertible and F is the remainder. Then (19.0.10) becomes

E · u = F · u + b (19.0.13)

The relaxation method involves choosing an initial guess u(0) and then solving
successively for iterates u(r) from

E · u(r) = F · u(r−1) + b (19.0.14)

Since E is chosen to be easily invertible, each iteration is fast. We will discuss
relaxation methods in some detail in §19.5 and §19.6.

824 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

So-called rapid methods [5] apply for only a rather special class of equations:
those with constant coefficients, or, more generally, those that are separable in the
chosen coordinates. In addition, the boundaries must coincide with coordinate lines.
This special class of equations is met quite often in practice. We defer detailed
discussion to §19.4. Note, however, that the multigrid relaxation methods discussed
in §19.6 can be faster than “rapid” methods.

Matrix methods attempt to solve the equation

A · x = b (19.0.15)

directly. The degree to which this is practical depends very strongly on the exact
structure of the matrix A for the problem at hand, so our discussion can go no farther
than a few remarks and references at this point.

Sparseness of the matrix must be the guiding force. Otherwise the matrix
problem is prohibitively large. For example, the simplest problem on a 100× 100
spatial grid would involve 10000 unknown uj,l’s, implying a 10000× 10000 matrix
A, containing 108 elements!

As we discussed at the end of §2.7, if A is symmetric and positive definite
(as it usually is in elliptic problems), the conjugate-gradient algorithm can be
used. In practice, rounding error often spoils the effectiveness of the conjugate
gradient algorithm for solving finite-difference equations. However, it is useful
when incorporated in methods that first rewrite the equations so that A is transformed
to a matrix A′ that is close to the identity matrix. The quadratic surface defined by the
equations then has almost spherical contours, and the conjugate gradient algorithm
works very well. In §2.7, in the routine linbcg, an analogous preconditioner
was exploited for non-positive definite problems with the more general biconjugate
gradient method. For the positive definite case that arises in PDEs, an example of
a successful implementation is the incomplete Cholesky conjugate gradient method
(ICCG) (see [6-8]).

Another method that relies on a transformation approach is the strongly implicit
procedure of Stone [9]. A program called SIPSOL that implements this routine has
been published [10].

A third class of matrix methods is the Analyze-Factorize-Operate approach as
described in §2.7.

Generally speaking, when you have the storage available to implement these
methods — not nearly as much as the 108 above, but usually much more than is
required by relaxation methods — then you should consider doing so. Only multigrid
relaxation methods (§19.6) are competitive with the best matrix methods. For grids
larger than, say, 300 × 300, however, it is generally found that only relaxation
methods, or “rapid” methods when they are applicable, are possible.

There Is More to Life than Finite Differencing

Besides finite differencing, there are other methods for solving PDEs. Most
important are finite element, Monte Carlo, spectral, and variational methods. Unfor-
tunately, we shall barely be able to do justice to finite differencing in this chapter,
and so shall not be able to discuss these other methods in this book. Finite element
methods [11-12] are often preferred by practitioners in solid mechanics and structural

19.1 Flux-Conservative Initial Value Problems 825

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

engineering; these methods allow considerable freedom in putting computational
elements where you want them, important when dealing with highly irregular geome-
tries. Spectral methods [13-15] are preferred for very regular geometries and smooth
functions; they converge more rapidly than finite-difference methods (cf. §19.4), but
they do not work well for problems with discontinuities.

CITED REFERENCES AND FURTHER READING:

Ames, W.F. 1977, Numerical Methods for Partial Differential Equations, 2nd ed. (New York:
Academic Press). [1]

Richtmyer, R.D., and Morton, K.W. 1967, Difference Methods for Initial Value Problems, 2nd ed.
(New York: Wiley-Interscience). [2]

Roache, P.J. 1976, Computational Fluid Dynamics (Albuquerque: Hermosa). [3]

Mitchell, A.R., and Griffiths, D.F. 1980, The Finite Difference Method in Partial Differential Equa-
tions (New York: Wiley) [includes discussion of finite element methods]. [4]

Dorr, F.W. 1970, SIAM Review, vol. 12, pp. 248–263. [5]

Meijerink, J.A., and van der Vorst, H.A. 1977, Mathematics of Computation, vol. 31, pp. 148–
162. [6]

van der Vorst, H.A. 1981, Journal of Computational Physics, vol. 44, pp. 1–19 [review of sparse
iterative methods]. [7]

Kershaw, D.S. 1970, Journal of Computational Physics, vol. 26, pp. 43–65. [8]

Stone, H.J. 1968, SIAM Journal on Numerical Analysis, vol. 5, pp. 530–558. [9]

Jesshope, C.R. 1979, Computer Physics Communications, vol. 17, pp. 383–391. [10]

Strang, G., and Fix, G. 1973, An Analysis of the Finite Element Method (Englewood Cliffs, NJ:
Prentice-Hall). [11]

Burnett, D.S. 1987, Finite Element Analysis: From Concepts to Applications (Reading, MA:
Addison-Wesley). [12]

Gottlieb, D. and Orszag, S.A. 1977, Numerical Analysis of Spectral Methods: Theory and Ap-
plications (Philadelphia: S.I.A.M.). [13]

Canuto, C., Hussaini, M.Y., Quarteroni, A., and Zang, T.A. 1988, Spectral Methods in Fluid
Dynamics (New York: Springer-Verlag). [14]

Boyd, J.P. 1989, Chebyshev and Fourier Spectral Methods (New York: Springer-Verlag). [15]

19.1 Flux-Conservative Initial Value Problems

A large class of initial value (time-evolution) PDEs in one space dimension can
be cast into the form of a flux-conservative equation,

∂u
∂t

= −∂F(u)

∂x
(19.1.1)

where u and F are vectors, and where (in some cases) F may depend not only on u
but also on spatial derivatives of u. The vector F is called the conserved flux.

For example, the prototypical hyperbolic equation, the one-dimensional wave
equation with constant velocity of propagation v

∂2u

∂t2
= v2 ∂

2u

∂x2
(19.1.2)

826 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

can be rewritten as a set of two first-order equations

∂r

∂t
= v

∂s

∂x
∂s

∂t
= v

∂r

∂x
(19.1.3)

where

r ≡ v∂u
∂x

s ≡ ∂u

∂t
(19.1.4)

In this case r and s become the two components of u, and the flux is given by
the linear matrix relation

F(u) =

(
0 −v
−v 0

)
· u (19.1.5)

(The physicist-reader may recognize equations (19.1.3) as analogous to Maxwell’s
equations for one-dimensional propagation of electromagnetic waves.)

We will consider, in this section, a prototypical example of the general flux-
conservative equation (19.1.1), namely the equation for a scalar u,

∂u

∂t
= −v∂u

∂x
(19.1.6)

with v a constant. As it happens, we already know analytically that the general
solution of this equation is a wave propagating in the positive x-direction,

u = f(x − vt) (19.1.7)

where f is an arbitrary function. However, the numerical strategies that we develop
will be equally applicable to the more general equations represented by (19.1.1). In
some contexts, equation (19.1.6) is called an advective equation, because the quantity
u is transported by a “fluid flow” with a velocity v.

How do we go about finite differencing equation (19.1.6) (or, analogously,
19.1.1)? The straightforward approach is to choose equally spaced points along both
the t- and x-axes. Thus denote

xj = x0 + j∆x, j = 0, 1, . . . , J

tn = t0 + n∆t, n = 0, 1, . . . , N
(19.1.8)

Let unj denote u(tn, xj). We have several choices for representing the time
derivative term. The obvious way is to set

∂u

∂t

∣∣∣∣
j,n

=
un+1
j − unj

∆t
+O(∆t) (19.1.9)

This is called forward Euler differencing (cf. equation 16.1.1). While forward Euler
is only first-order accurate in ∆t, it has the advantage that one is able to calculate

19.1 Flux-Conservative Initial Value Problems 827

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

t or n

x or j

FTCS

Figure 19.1.1. Representation of the Forward Time Centered Space (FTCS) differencing scheme. In this
and subsequent figures, the open circle is the new point at which the solution is desired; filled circles are
known points whose function values are used in calculating the new point; the solid lines connect points
that are used to calculate spatial derivatives; the dashed lines connect points that are used to calculate time
derivatives. The FTCS scheme is generally unstable for hyperbolic problems and cannot usually be used.

quantities at timestep n+ 1 in terms of only quantities known at timestep n. For the
space derivative, we can use a second-order representation still using only quantities
known at timestep n:

∂u

∂x

∣∣∣∣
j,n

=
unj+1 − unj−1

2∆x
+ O(∆x2) (19.1.10)

The resulting finite-difference approximation to equation (19.1.6) is called the FTCS
representation (Forward Time Centered Space),

un+1
j − unj

∆t
= −v

(
unj+1 − unj−1

2∆x

)
(19.1.11)

which can easily be rearranged to be a formula for un+1
j in terms of the other

quantities. The FTCS scheme is illustrated in Figure 19.1.1. It’s a fine example of
an algorithm that is easy to derive, takes little storage, and executes quickly. Too
bad it doesn’t work! (See below.)

The FTCS representation is an explicit scheme. This means that un+1
j for each

j can be calculated explicitly from the quantities that are already known. Later we
shall meet implicit schemes, which require us to solve implicit equations coupling
the un+1

j for various j. (Explicit and implicit methods for ordinary differential
equations were discussed in §16.6.) The FTCS algorithm is also an example of
a single-level scheme, since only values at time level n have to be stored to find
values at time level n + 1.

von Neumann Stability Analysis

Unfortunately, equation (19.1.11) is of very limited usefulness. It is an unstable
method, which can be used only (if at all) to study waves for a short fraction of one
oscillation period. To find alternative methods with more general applicability, we
must introduce the von Neumann stability analysis.

The von Neumann analysis is local: We imagine that the coefficients of the
difference equations are so slowly varying as to be considered constant in space
and time. In that case, the independent solutions, or eigenmodes, of the difference
equations are all of the form

unj = ξneikj∆x (19.1.12)

828 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

t or n

x or j

Lax

Figure 19.1.2. Representation of the Lax differencing scheme, as in the previous figure. The stability
criterion for this scheme is the Courant condition.

where k is a real spatial wave number (which can have any value) and ξ = ξ(k) is
a complex number that depends on k. The key fact is that the time dependence of
a single eigenmode is nothing more than successive integer powers of the complex
number ξ. Therefore, the difference equations are unstable (have exponentially
growing modes) if |ξ(k)| > 1 for some k. The number ξ is called the amplification
factor at a given wave number k.

To find ξ(k), we simply substitute (19.1.12) back into (19.1.11). Dividing
by ξn, we get

ξ(k) = 1− iv∆t
∆x

sin k∆x (19.1.13)

whose modulus is > 1 for all k; so the FTCS scheme is unconditionally unstable.
If the velocity v were a function of t and x, then we would write vnj in equation

(19.1.11). In the von Neumann stability analysis we would still treat v as a constant,
the idea being that for v slowly varying the analysis is local. In fact, even in the
case of strictly constant v, the von Neumann analysis does not rigorously treat the
end effects at j = 0 and j = N .

More generally, if the equation’s right-hand side were nonlinear in u, then a
von Neumann analysis would linearize by writing u = u0 + δu, expanding to linear
order in δu. Assuming that the u0 quantities already satisfy the difference equation
exactly, the analysis would look for an unstable eigenmode of δu.

Despite its lack of rigor, the von Neumann method generally gives valid
answers and is much easier to apply than more careful methods. We accordingly
adopt it exclusively. (See, for example, [1] for a discussion of other methods of
stability analysis.)

Lax Method

The instability in the FTCS method can be cured by a simple change due to Lax.
One replaces the term unj in the time derivative term by its average (Figure 19.1.2):

unj →
1

2

(
unj+1 + unj−1

)
(19.1.14)

This turns (19.1.11) into

un+1
j =

1

2

(
unj+1 + unj−1

)
− v∆t

2∆x

(
unj+1 − unj−1

)
(19.1.15)

19.1 Flux-Conservative Initial Value Problems 829

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).
t or n

∆t

x or j

∆t

∆x∆x

unstablestable

(a) (b)

Figure 19.1.3. Courant condition for stability of a differencing scheme. The solution of a hyperbolic
problem at a point depends on information within some domain of dependency to the past, shown here
shaded. The differencing scheme (19.1.15) has its own domain of dependency determined by the choice
of points on one time slice (shown as connected solid dots) whose values are used in determining a new
point (shown connected by dashed lines). A differencing scheme is Courant stable if the differencing
domain of dependency is larger than that of the PDEs, as in (a), and unstable if the relationship is the
reverse, as in (b). For more complicated differencing schemes, the domain of dependency might not be
determined simply by the outermost points.

Substituting equation (19.1.12), we find for the amplification factor

ξ = cos k∆x− iv∆t
∆x

sin k∆x (19.1.16)

The stability condition |ξ|2 ≤ 1 leads to the requirement

|v|∆t
∆x

≤ 1 (19.1.17)

This is the famous Courant-Friedrichs-Lewy stability criterion, often
called simply the Courant condition. Intuitively, the stability condition can be
understood as follows (Figure 19.1.3): The quantity un+1

j in equation (19.1.15) is
computed from information at points j − 1 and j + 1 at time n. In other words,
xj−1 and xj+1 are the boundaries of the spatial region that is allowed to communicate
information to un+1

j . Now recall that in the continuum wave equation, information

actually propagates with a maximum velocity v. If the point un+1
j is outside of

the shaded region in Figure 19.1.3, then it requires information from points more
distant than the differencing scheme allows. Lack of that information gives rise to
an instability. Therefore, ∆t cannot be made too large.

The surprising result, that the simple replacement (19.1.14) stabilizes the FTCS
scheme, is our first encounter with the fact that differencing PDEs is an art as much
as a science. To see if we can demystify the art somewhat, let us compare the
FTCS and Lax schemes by rewriting equation (19.1.15) so that it is in the form of
equation (19.1.11) with a remainder term:

un+1
j − unj

∆t
= −v

(
unj+1 − unj−1

2∆x

)
+

1

2

(
unj+1 − 2unj + unj−1

∆t

)
(19.1.18)

But this is exactly the FTCS representation of the equation

∂u

∂t
= −v∂u

∂x
+

(∆x)2

2∆t
∇2u (19.1.19)

830 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

where∇2 = ∂2/∂x2 in one dimension. We have, in effect, added a diffusion term to
the equation, or, if you recall the form of the Navier-Stokes equation for viscous fluid
flow, a dissipative term. The Lax scheme is thus said to have numerical dissipation,
or numerical viscosity. We can see this also in the amplification factor. Unless |v|∆t
is exactly equal to ∆x, |ξ|< 1 and the amplitude of the wave decreases spuriously.

Isn’t a spurious decrease as bad as a spurious increase? No. The scales that we
hope to study accurately are those that encompass many grid points, so that they have
k∆x � 1. (The spatial wave number k is defined by equation 19.1.12.) For these
scales, the amplification factor can be seen to be very close to one, in both the stable
and unstable schemes. The stable and unstable schemes are therefore about equally
accurate. For the unstable scheme, however, short scales with k∆x ∼ 1, which we
are not interested in, will blow up and swamp the interesting part of the solution.
Much better to have a stable scheme in which these short wavelengths die away
innocuously. Both the stable and the unstable schemes are inaccurate for these short
wavelengths, but the inaccuracy is of a tolerable character when the scheme is stable.

When the independent variable u is a vector, then the von Neumann analysis
is slightly more complicated. For example, we can consider equation (19.1.3),
rewritten as

∂

∂t

[
r
s

]
=

∂

∂x

[
vs
vr

]
(19.1.20)

The Lax method for this equation is

rn+1
j =

1

2
(rnj+1 + rnj−1) +

v∆t

2∆x
(snj+1 − snj−1)

sn+1
j =

1

2
(snj+1 + snj−1) +

v∆t

2∆x
(rnj+1 − rnj−1)

(19.1.21)

The von Neumann stability analysis now proceeds by assuming that the eigenmode
is of the following (vector) form,[

rnj
snj

]
= ξneikj∆x

[
r0

s0

]
(19.1.22)

Here the vector on the right-hand side is a constant (both in space and in time)
eigenvector, and ξ is a complex number, as before. Substituting (19.1.22) into
(19.1.21), and dividing by the power ξn, gives the homogeneous vector equation (cos k∆x)− ξ i

v∆t

∆x
sin k∆x

i
v∆t

∆x
sin k∆x (cos k∆x)− ξ

 ·
 r0

s0

 =

 0

0

 (19.1.23)

This admits a solution only if the determinant of the matrix on the left vanishes, a
condition easily shown to yield the two roots ξ

ξ = cos k∆x± iv∆t
∆x

sin k∆x (19.1.24)

The stability condition is that both roots satisfy |ξ| ≤ 1. This again turns out to be
simply the Courant condition (19.1.17).

19.1 Flux-Conservative Initial Value Problems 831

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Other Varieties of Error

Thus far we have been concerned with amplitude error, because of its intimate
connection with the stability or instability of a differencing scheme. Other varieties
of error are relevant when we shift our concern to accuracy, rather than stability.

Finite-difference schemes for hyperbolic equations can exhibit dispersion, or
phase errors. For example, equation (19.1.16) can be rewritten as

ξ = e−ik∆x + i

(
1− v∆t

∆x

)
sin k∆x (19.1.25)

An arbitrary initial wave packet is a superposition of modes with different k’s.
At each timestep the modes get multiplied by different phase factors (19.1.25),
depending on their value of k. If ∆t = ∆x/v, then the exact solution for each mode
of a wave packet f(x−vt) is obtained if each mode gets multiplied by exp(−ik∆x).
For this value of ∆t, equation (19.1.25) shows that the finite-difference solution
gives the exact analytic result. However, if v∆t/∆x is not exactly 1, the phase
relations of the modes can become hopelessly garbled and the wave packet disperses.
Note from (19.1.25) that the dispersion becomes large as soon as the wavelength
becomes comparable to the grid spacing ∆x.

A third type of error is one associated with nonlinear hyperbolic equations and
is therefore sometimes called nonlinear instability. For example, a piece of the Euler
or Navier-Stokes equations for fluid flow looks like

∂v

∂t
= −v ∂v

∂x
+ . . . (19.1.26)

The nonlinear term in v can cause a transfer of energy in Fourier space from
long wavelengths to short wavelengths. This results in a wave profile steepening
until a vertical profile or “shock” develops. Since the von Neumann analysis
suggests that the stability can depend on k∆x, a scheme that was stable for shallow
profiles can become unstable for steep profiles. This kind of difficulty arises in
a differencing scheme where the cascade in Fourier space is halted at the shortest
wavelength representable on the grid, that is, at k ∼ 1/∆x. If energy simply
accumulates in these modes, it eventually swamps the energy in the long wavelength
modes of interest.

Nonlinear instability and shock formation is thus somewhat controlled by
numerical viscosity such as that discussed in connection with equation (19.1.18)
above. In some fluid problems,however, shock formation is not merely an annoyance,
but an actual physical behavior of the fluid whose detailed study is a goal. Then,
numerical viscosity alone may not be adequate or sufficiently controllable. This is a
complicated subject which we discuss further in the subsection on fluid dynamics,
below.

For wave equations, propagation errors (amplitude or phase) are usually most
worrisome. For advective equations, on the other hand, transport errors are usually
of greater concern. In the Lax scheme, equation (19.1.15), a disturbance in the
advected quantity u at mesh point j propagates to mesh points j + 1 and j − 1 at
the next timestep. In reality, however, if the velocity v is positive then only mesh
point j + 1 should be affected.

832 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

t or n

x or j

v

upwind

v

Figure 19.1.4. Representation of upwind differencing schemes. The upper scheme is stable when the
advection constant v is negative, as shown; the lower scheme is stable when the advection constant v is
positive, also as shown. The Courant condition must, of course, also be satisfied.

The simplest way to model the transport properties “better” is to use upwind
differencing (see Figure 19.1.4):

un+1
j − unj

∆t
= −vnj


unj − unj−1

∆x
, vnj > 0

unj+1 − unj
∆x

, vnj < 0
(19.1.27)

Note that this scheme is only first-order, not second-order, accurate in the
calculation of the spatial derivatives. How can it be “better”? The answer is
one that annoys the mathematicians: The goal of numerical simulations is not
always “accuracy” in a strictly mathematical sense, but sometimes “fidelity” to the
underlying physics in a sense that is looser and more pragmatic. In such contexts,
some kinds of error are much more tolerable than others. Upwind differencing
generally adds fidelity to problems where the advected variables are liable to undergo
sudden changes of state, e.g., as they pass through shocks or other discontinuities.
You will have to be guided by the specific nature of your own problem.

For the differencing scheme (19.1.27), the amplification factor (for constant v) is

ξ = 1−
∣∣∣∣v∆t∆x

∣∣∣∣ (1− cos k∆x)− iv∆t
∆x

sin k∆x (19.1.28)

|ξ|2 = 1− 2

∣∣∣∣v∆t∆x

∣∣∣∣(1−
∣∣∣∣v∆t∆x

∣∣∣∣) (1− cos k∆x) (19.1.29)

So the stability criterion |ξ|2 ≤ 1 is (again) simply the Courant condition (19.1.17).
There are various ways of improving the accuracy of first-order upwind

differencing. In the continuum equation, material originally a distance v∆t away

19.1 Flux-Conservative Initial Value Problems 833

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

staggered

leapfrog

t or n

x or j

Figure 19.1.5. Representation of the staggered leapfrog differencing scheme. Note that information
from two previous time slices is used in obtaining the desired point. This scheme is second-order
accurate in both space and time.

arrives at a given point after a time interval ∆t. In the first-order method, the
material always arrives from ∆x away. If v∆t� ∆x (to insure accuracy), this can
cause a large error. One way of reducing this error is to interpolate u between j − 1
and j before transporting it. This gives effectively a second-order method. Various
schemes for second-order upwind differencing are discussed and compared in [2-3].

Second-Order Accuracy in Time

When using a method that is first-order accurate in time but second-order
accurate in space, one generally has to take v∆t significantly smaller than ∆x to
achieve desired accuracy, say, by at least a factor of 5. Thus the Courant condition
is not actually the limiting factor with such schemes in practice. However, there are
schemes that are second-order accurate in both space and time, and these can often be
pushed right to their stability limit, with correspondingly smaller computation times.

For example, the staggered leapfrog method for the conservation equation
(19.1.1) is defined as follows (Figure 19.1.5): Using the values of un at time tn,
compute the fluxes F nj . Then compute new values un+1 using the time-centered
values of the fluxes:

un+1
j − un−1

j = −∆t

∆x
(F nj+1 − F nj−1) (19.1.30)

The name comes from the fact that the time levels in the time derivative term
“leapfrog” over the time levels in the space derivative term. The method requires
that un−1 and un be stored to compute un+1.

For our simple model equation (19.1.6), staggered leapfrog takes the form

un+1
j − un−1

j = −v∆t
∆x

(unj+1 − unj−1) (19.1.31)

The von Neumann stability analysis now gives a quadratic equation for ξ, rather than
a linear one, because of the occurrence of three consecutive powers of ξ when the

834 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

form (19.1.12) for an eigenmode is substituted into equation (19.1.31),

ξ2 − 1 = −2iξ
v∆t

∆x
sin k∆x (19.1.32)

whose solution is

ξ = −iv∆t
∆x

sin k∆x±

√
1−

(
v∆t

∆x
sink∆x

)2

(19.1.33)

Thus the Courant condition is again required for stability. In fact, in equation
(19.1.33), |ξ|2 = 1 for any v∆t ≤ ∆x. This is the great advantage of the staggered
leapfrog method: There is no amplitude dissipation.

Staggered leapfrog differencing of equations like (19.1.20) is most transparent
if the variables are centered on appropriate half-mesh points:

rnj+1/2 ≡ v
∂u

∂x

∣∣∣∣n
j+1/2

= v
unj+1 − unj

∆x

s
n+1/2
j ≡ ∂u

∂t

∣∣∣∣n+1/2

j

=
un+1
j − unj

∆t

(19.1.34)

This is purely a notational convenience: we can think of the mesh on which r and
s are defined as being twice as fine as the mesh on which the original variable u is
defined. The leapfrog differencing of equation (19.1.20) is

rn+1
j+1/2 − rnj+1/2

∆t
=
s
n+1/2
j+1 − sn+1/2

j

∆x

s
n+1/2
j − sn−1/2

j

∆t
= v

rnj+1/2 − rnj−1/2

∆x

(19.1.35)

If you substitute equation (19.1.22) in equation (19.1.35), you will find that once
again the Courant condition is required for stability, and that there is no amplitude
dissipation when it is satisfied.

If we substitute equation (19.1.34) in equation (19.1.35), we find that equation
(19.1.35) is equivalent to

un+1
j − 2unj + un−1

j

(∆t)2
= v2

unj+1 − 2unj + unj−1

(∆x)2
(19.1.36)

This is just the “usual” second-order differencing of the wave equation (19.1.2). We
see that it is a two-level scheme, requiring both un and un−1 to obtain un+1. In
equation (19.1.35) this shows up as both sn−1/2 and rn being needed to advance
the solution.

For equations more complicated than our simple model equation, especially
nonlinear equations, the leapfrog method usually becomes unstable when the gradi-
ents get large. The instability is related to the fact that odd and even mesh points are
completely decoupled, like the black and white squares of a chess board, as shown

19.1 Flux-Conservative Initial Value Problems 835

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Figure 19.1.6. Origin of mesh-drift instabilities in a staggered leapfrog scheme. If the mesh points
are imagined to lie in the squares of a chess board, then white squares couple to themselves, black to
themselves, but there is no coupling between white and black. The fix is to introduce a small diffusive
mesh-coupling piece.

in Figure 19.1.6. This mesh drifting instability is cured by coupling the two meshes
through a numerical viscosity term, e.g., adding to the right side of (19.1.31) a small
coefficient (� 1) times unj+1 − 2unj + unj−1. For more on stabilizing difference
schemes by adding numerical dissipation, see, e.g., [4].

The Two-Step Lax-Wendroff scheme is a second-order in time method that
avoids large numerical dissipation and mesh drifting. One defines intermediate
values uj+1/2 at the half timesteps tn+1/2 and the half mesh points xj+1/2. These
are calculated by the Lax scheme:

u
n+1/2
j+1/2 =

1

2
(unj+1 + unj) − ∆t

2∆x
(F nj+1 − F nj) (19.1.37)

Using these variables, one calculates the fluxes F n+1/2
j+1/2 . Then the updated values

un+1
j are calculated by the properly centered expression

un+1
j = unj −

∆t

∆x

(
F
n+1/2
j+1/2 − F

n+1/2
j−1/2

)
(19.1.38)

The provisional values un+1/2
j+1/2 are now discarded. (See Figure 19.1.7.)

Let us investigate the stability of this method for our model advective equation,
where F = vu. Substitute (19.1.37) in (19.1.38) to get

un+1
j = unj − α

[
1

2
(unj+1 + unj) − 1

2
α(unj+1 − unj)

−1

2
(unj + unj−1) +

1

2
α(unj − unj−1)

] (19.1.39)

836 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

t or n

x or j

halfstep points

two-step Lax Wendroff

Figure 19.1.7. Representation of the two-step Lax-Wendroff differencing scheme. Two halfstep points
(⊗) are calculated by the Lax method. These, plus one of the original points, produce the new point via
staggered leapfrog. Halfstep points are used only temporarily and do not require storage allocation on the
grid. This scheme is second-order accurate in both space and time.

where

α ≡ v∆t

∆x
(19.1.40)

Then

ξ = 1− iα sin k∆x− α2(1 − cos k∆x) (19.1.41)

so

|ξ|2 = 1− α2(1− α2)(1− cos k∆x)2 (19.1.42)

The stability criterion |ξ|2 ≤ 1 is therefore α2 ≤ 1, or v∆t ≤ ∆x as usual.
Incidentally, you should not think that the Courant condition is the only stability
requirement that ever turns up in PDEs. It keeps doing so in our model examples
just because those examples are so simple in form. The method of analysis is,
however, general.

Except when α = 1, |ξ|2 < 1 in (19.1.42), so some amplitude damping does
occur. The effect is relatively small, however, for wavelengths large compared with
the mesh size ∆x. If we expand (19.1.42) for small k∆x, we find

|ξ|2 = 1− α2(1− α2)
(k∆x)4

4
+ . . . (19.1.43)

The departure from unity occurs only at fourth order in k. This should be contrasted
with equation (19.1.16) for the Lax method, which shows that

|ξ|2 = 1− (1 − α2)(k∆x)2 + . . . (19.1.44)

for small k∆x.

19.1 Flux-Conservative Initial Value Problems 837

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

In summary, our recommendation for initial value problems that can be cast
in flux-conservative form, and especially problems related to the wave equation,
is to use the staggered leapfrog method when possible. We have personally had
better success with it than with the Two-Step Lax-Wendroff method. For problems
sensitive to transport errors, upwind differencing or one of its refinements should
be considered.

Fluid Dynamics with Shocks

As we alluded to earlier, the treatment of fluid dynamics problems with shocks
has become a very complicated and very sophisticated subject. All we can attempt
to do here is to guide you to some starting points in the literature.

There are basically three important general methods for handling shocks. The
oldest and simplest method, invented by von Neumann and Richtmyer, is to add
artificial viscosity to the equations, modeling the way Nature uses real viscosity
to smooth discontinuities. A good starting point for trying out this method is the
differencing scheme in §12.11 of [1]. This scheme is excellent for nearly all problems
in one spatial dimension.

The second method combines a high-order differencing scheme that is accurate
for smooth flows with a low order scheme that is very dissipative and can smooth
the shocks. Typically, various upwind differencing schemes are combined using
weights chosen to zero the low order scheme unless steep gradients are present, and
also chosen to enforce various “monotonicity” constraints that prevent nonphysical
oscillations from appearing in the numerical solution. References [2-3,5] are a good
place to start with these methods.

The third, and potentially most powerful method, is Godunov’s approach. Here
one gives up the simple linearization inherent in finite differencing based on Taylor
series and includes the nonlinearity of the equations explicitly. There is an analytic
solution for the evolution of two uniform states of a fluid separated by a discontinuity,
the Riemann shock problem. Godunov’s idea was to approximate the fluid by a
large number of cells of uniform states, and piece them together using the Riemann
solution. There have been many generalizations of Godunov’s approach, of which
the most powerful is probably the PPM method [6].

Readable reviews of all these methods, discussing the difficulties arising when
one-dimensional methods are generalized to multidimensions, are given in [7-9].

CITED REFERENCES AND FURTHER READING:

Ames, W.F. 1977, Numerical Methods for Partial Differential Equations, 2nd ed. (New York:
Academic Press), Chapter 4.

Richtmyer, R.D., and Morton, K.W. 1967, Difference Methods for Initial Value Problems, 2nd ed.
(New York: Wiley-Interscience). [1]

Centrella, J., and Wilson, J.R. 1984, Astrophysical Journal Supplement, vol. 54, pp. 229–249,
Appendix B. [2]

Hawley, J.F., Smarr, L.L., and Wilson, J.R. 1984, Astrophysical Journal Supplement, vol. 55,
pp. 211–246, §2c. [3]

Kreiss, H.-O. 1978, Numerical Methods for Solving Time-Dependent Problems for Partial Differ-
ential Equations (Montreal: University of Montreal Press), pp. 66ff. [4]

Harten, A., Lax, P.D., and Van Leer, B. 1983, SIAM Review, vol. 25, pp. 36–61. [5]

Woodward, P., and Colella, P. 1984, Journal of Computational Physics, vol. 54, pp. 174–201. [6]

838 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Roache, P.J. 1976, Computational Fluid Dynamics (Albuquerque: Hermosa). [7]

Woodward, P., and Colella, P. 1984, Journal of Computational Physics, vol. 54, pp. 115–173. [8]

Rizzi, A., and Engquist, B. 1987, Journal of Computational Physics, vol. 72, pp. 1–69. [9]

19.2 Diffusive Initial Value Problems

Recall the model parabolic equation, the diffusion equation in one space
dimension,

∂u

∂t
=

∂

∂x

(
D
∂u

∂x

)
(19.2.1)

where D is the diffusion coefficient. Actually, this equation is a flux-conservative
equation of the form considered in the previous section, with

F = −D∂u
∂x

(19.2.2)

the flux in the x-direction. We will assume D ≥ 0, otherwise equation (19.2.1) has
physically unstable solutions: A small disturbance evolves to become more and more
concentrated instead of dispersing. (Don’t make the mistake of trying to find a stable
differencing scheme for a problem whose underlying PDEs are themselves unstable!)

Even though (19.2.1) is of the form already considered, it is useful to consider
it as a model in its own right. The particular form of flux (19.2.2), and its direct
generalizations, occur quite frequently in practice. Moreover, we have already seen
that numerical viscosity and artificial viscosity can introduce diffusive pieces like
the right-hand side of (19.2.1) in many other situations.

Consider first the case when D is a constant. Then the equation

∂u

∂t
= D

∂2u

∂x2
(19.2.3)

can be differenced in the obvious way:

un+1
j − unj

∆t
= D

[
unj+1 − 2unj + unj−1

(∆x)2

]
(19.2.4)

This is the FTCS scheme again, except that it is a second derivative that has been
differenced on the right-hand side. But this makes a world of difference! The
FTCS scheme was unstable for the hyperbolic equation; however, a quick calculation
shows that the amplification factor for equation (19.2.4) is

ξ = 1− 4D∆t

(∆x)2
sin2

(
k∆x

2

)
(19.2.5)

The requirement |ξ| ≤ 1 leads to the stability criterion

2D∆t

(∆x)2
≤ 1 (19.2.6)

19.2 Diffusive Initial Value Problems 839

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The physical interpretation of the restriction (19.2.6) is that the maximum
allowed timestep is, up to a numerical factor, the diffusion time across a cell of
width ∆x.

More generally, the diffusion time τ across a spatial scale of size λ is of order

τ ∼ λ2

D
(19.2.7)

Usually we are interested in modeling accurately the evolution of features with
spatial scales λ � ∆x. If we are limited to timesteps satisfying (19.2.6), we will
need to evolve through of order λ2/(∆x)2 steps before things start to happen on the
scale of interest. This number of steps is usually prohibitive. We must therefore
find a stable way of taking timesteps comparable to, or perhaps — for accuracy —
somewhat smaller than, the time scale of (19.2.7).

This goal poses an immediate “philosophical” question. Obviously the large
timesteps that we propose to take are going to be woefully inaccurate for the small
scales that we have decided not to be interested in. We want those scales to do
something stable, “innocuous,” and perhaps not too physically unreasonable. We
want to build this innocuous behavior into our differencing scheme. What should
it be?

There are two different answers, each of which has its pros and cons. The
first answer is to seek a differencing scheme that drives small-scale features to their
equilibrium forms, e.g., satisfying equation (19.2.3) with the left-hand side set to
zero. This answer generally makes the best physical sense; but, as we will see, it leads
to a differencing scheme (“fully implicit”) that is only first-order accurate in time for
the scales that we are interested in. The second answer is to let small-scale features
maintain their initial amplitudes, so that the evolution of the larger-scale features
of interest takes place superposed with a kind of “frozen in” (though fluctuating)
background of small-scale stuff. This answer gives a differencing scheme (“Crank-
Nicholson”) that is second-order accurate in time. Toward the end of an evolution
calculation, however, one might want to switch over to some steps of the other kind,
to drive the small-scale stuff into equilibrium. Let us now see where these distinct
differencing schemes come from:

Consider the following differencing of (19.2.3),

un+1
j − unj

∆t
= D

[
un+1
j+1 − 2un+1

j + un+1
j−1

(∆x)2

]
(19.2.8)

This is exactly like the FTCS scheme (19.2.4), except that the spatial derivatives on
the right-hand side are evaluated at timestep n + 1. Schemes with this character are
called fully implicit or backward time, by contrast with FTCS (which is called fully
explicit). To solve equation (19.2.8) one has to solve a set of simultaneous linear
equations at each timestep for theun+1

j . Fortunately, this is a simple problem because
the system is tridiagonal: Just group the terms in equation (19.2.8) appropriately:

−αun+1
j−1 + (1 + 2α)un+1

j − αun+1
j+1 = unj , j = 1, 2...J − 1 (19.2.9)

where

α ≡ D∆t

(∆x)2
(19.2.10)

840 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Supplemented by Dirichlet or Neumann boundary conditions at j = 0 and j = J ,
equation (19.2.9) is clearly a tridiagonal system, which can easily be solved at each
timestep by the method of §2.4.

What is the behavior of (19.2.8) for very large timesteps? The answer is seen
most clearly in (19.2.9), in the limit α→∞ (∆t→∞). Dividing by α, we see that
the difference equations are just the finite-difference form of the equilibrium equation

∂2u

∂x2
= 0 (19.2.11)

What about stability? The amplification factor for equation (19.2.8) is

ξ =
1

1 + 4α sin2

(
k∆x

2

) (19.2.12)

Clearly |ξ| < 1 for any stepsize ∆t. The scheme is unconditionally stable. The details
of the small-scale evolution from the initial conditions are obviously inaccurate for
large ∆t. But, as advertised, the correct equilibrium solution is obtained. This is
the characteristic feature of implicit methods.

Here, on the other hand, is how one gets to the second of our above philosophical
answers, combining the stability of an implicit method with the accuracy of a method
that is second-order in both space and time. Simply form the average of the explicit
and implicit FTCS schemes:

un+1
j − unj

∆t
=
D

2

[
(un+1
j+1 − 2un+1

j + un+1
j−1) + (unj+1 − 2unj + unj−1)

(∆x)2

]
(19.2.13)

Here both the left- and right-hand sides are centered at timestep n+ 1
2 , so the method

is second-order accurate in time as claimed. The amplification factor is

ξ =

1− 2α sin2

(
k∆x

2

)
1 + 2α sin2

(
k∆x

2

) (19.2.14)

so the method is stable for any size ∆t. This scheme is called the Crank-Nicholson
scheme, and is our recommended method for any simple diffusion problem (perhaps
supplemented by a few fully implicit steps at the end). (See Figure 19.2.1.)

Now turn to some generalizations of the simple diffusion equation (19.2.3).
Suppose first that the diffusion coefficientD is not constant, say D = D(x). We can
adopt either of two strategies. First, we can make an analytic change of variable

y =

∫
dx

D(x)
(19.2.15)

19.2 Diffusive Initial Value Problems 841

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

t or n

x or j

FTCS

(a)

Fully Implicit(b) Crank-Nicholson(c)

Figure 19.2.1. Three differencing schemes for diffusive problems (shown as in Figure 19.1.2). (a)
Forward Time Center Space is first-order accurate, but stable only for sufficiently small timesteps.
(b) Fully Implicit is stable for arbitrarily large timesteps, but is still only first-order accurate. (c)
Crank-Nicholson is second-order accurate, and is usually stable for large timesteps.

Then
∂u

∂t
=

∂

∂x
D(x)

∂u

∂x
(19.2.16)

becomes
∂u

∂t
=

1

D(y)

∂2u

∂y2
(19.2.17)

and we evaluateD at the appropriate yj . Heuristically, the stability criterion (19.2.6)
in an explicit scheme becomes

∆t ≤ min
j

[
(∆y)2

2D−1
j

]
(19.2.18)

Note that constant spacing ∆y in y does not imply constant spacing in x.
An alternative method that does not require analytically tractable forms for

D is simply to difference equation (19.2.16) as it stands, centering everything
appropriately. Thus the FTCS method becomes

un+1
j − unj

∆t
=
Dj+1/2(unj+1 − unj) −Dj−1/2(unj − unj−1)

(∆x)2
(19.2.19)

where

Dj+1/2 ≡ D(xj+1/2) (19.2.20)

842 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

and the heuristic stability criterion is

∆t ≤ min
j

[
(∆x)2

2Dj+1/2

]
(19.2.21)

The Crank-Nicholson method can be generalized similarly.
The second complication one can consider is a nonlinear diffusion problem,

for example where D = D(u). Explicit schemes can be generalized in the obvious
way. For example, in equation (19.2.19) write

Dj+1/2 =
1

2

[
D(unj+1) +D(unj)

]
(19.2.22)

Implicit schemes are not as easy. The replacement (19.2.22) with n→ n+ 1 leaves
us with a nasty set of coupled nonlinear equations to solve at each timestep. Often
there is an easier way: If the form of D(u) allows us to integrate

dz = D(u)du (19.2.23)

analytically for z(u), then the right-hand side of (19.2.1) becomes ∂2z/∂x2, which
we difference implicitly as

zn+1
j+1 − 2zn+1

j + zn+1
j−1

(∆x)2
(19.2.24)

Now linearize each term on the right-hand side of equation (19.2.24), for example

zn+1
j ≡ z(un+1

j) = z(unj) + (un+1
j − unj)

∂z

∂u

∣∣∣∣
j,n

= z(unj) + (un+1
j − unj)D(unj)

(19.2.25)

This reduces the problem to tridiagonal form again and in practice usually retains
the stability advantages of fully implicit differencing.

Schrödinger Equation

Sometimes the physical problem being solved imposes constraints on the
differencing scheme that we have not yet taken into account. For example, consider
the time-dependent Schrödinger equation of quantum mechanics. This is basically a
parabolic equation for the evolution of a complex quantityψ. For the scattering of a
wavepacket by a one-dimensional potential V (x), the equation has the form

i
∂ψ

∂t
= −∂

2ψ

∂x2
+ V (x)ψ (19.2.26)

(Here we have chosen units so that Planck’s constant h̄ = 1 and the particle mass
m = 1/2.) One is given the initial wavepacket, ψ(x, t = 0), together with boundary

19.2 Diffusive Initial Value Problems 843

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

conditions that ψ → 0 at x → ±∞. Suppose we content ourselves with first-
order accuracy in time, but want to use an implicit scheme, for stability. A slight
generalization of (19.2.8) leads to

i

[
ψn+1
j − ψnj

∆t

]
= −

[
ψn+1
j+1 − 2ψn+1

j + ψn+1
j−1

(∆x)2

]
+ Vjψ

n+1
j (19.2.27)

for which

ξ =
1

1 + i

[
4∆t

(∆x)2
sin2

(
k∆x

2

)
+ Vj∆t

] (19.2.28)

This is unconditionally stable, but unfortunately is not unitary. The underlying
physical problem requires that the total probability of finding the particle somewhere
remains unity. This is represented formally by the modulus-square norm of ψ
remaining unity: ∫ ∞

−∞
|ψ|2dx = 1 (19.2.29)

The initial wave functionψ(x, 0) is normalized to satisfy (19.2.29). The Schrödinger
equation (19.2.26) then guarantees that this condition is satisfied at all later times.

Let us write equation (19.2.26) in the form

i
∂ψ

∂t
= Hψ (19.2.30)

where the operator H is

H = − ∂2

∂x2
+ V (x) (19.2.31)

The formal solution of equation (19.2.30) is

ψ(x, t) = e−iHtψ(x, 0) (19.2.32)

where the exponential of the operator is defined by its power series expansion.
The unstable explicit FTCS scheme approximates (19.2.32) as

ψn+1
j = (1− iH∆t)ψnj (19.2.33)

where H is represented by a centered finite-difference approximation in x. The
stable implicit scheme (19.2.27) is, by contrast,

ψn+1
j = (1 + iH∆t)−1ψnj (19.2.34)

These are both first-order accurate in time, as can be seen by expanding equation
(19.2.32). However, neither operator in (19.2.33) or (19.2.34) is unitary.

844 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The correct way to difference Schrödinger’s equation [1,2] is to use Cayley’s
form for the finite-difference representation of e−iHt, which is second-order accurate
and unitary:

e−iHt '
1− 1

2 iH∆t

1 + 1
2 iH∆t

(19.2.35)

In other words, (
1 + 1

2
iH∆t

)
ψn+1
j =

(
1− 1

2
iH∆t

)
ψnj (19.2.36)

On replacing H by its finite-difference approximation in x, we have a complex
tridiagonal system to solve. The method is stable, unitary, and second-order accurate
in space and time. In fact, it is simply the Crank-Nicholson method once again!

CITED REFERENCES AND FURTHER READING:

Ames, W.F. 1977, Numerical Methods for Partial Differential Equations, 2nd ed. (New York:
Academic Press), Chapter 2.

Goldberg, A., Schey, H.M., and Schwartz, J.L. 1967, American Journal of Physics, vol. 35,
pp. 177–186. [1]

Galbraith, I., Ching, Y.S., and Abraham, E. 1984, American Journal of Physics, vol. 52, pp. 60–
68. [2]

19.3 Initial Value Problems in Multidimensions

The methods described in §19.1 and §19.2 for problems in 1 + 1 dimension
(one space and one time dimension) can easily be generalized toN + 1 dimensions.
However, the computing power necessary to solve the resulting equations is enor-
mous. If you have solved a one-dimensional problem with 100 spatial grid points,
solving the two-dimensional version with 100 × 100 mesh points requires at least
100 times as much computing. You generally have to be content with very modest
spatial resolution in multidimensional problems.

Indulge us in offering a bit of advice about the development and testing of
multidimensional PDE codes: You should always first run your programs on very
small grids, e.g., 8 × 8, even though the resulting accuracy is so poor as to be
useless. When your program is all debugged and demonstrably stable, then you can
increase the grid size to a reasonable one and start looking at the results. We have
actually heard someone protest, “my program would be unstable for a crude grid,
but I am sure the instability will go away on a larger grid.” That is nonsense of a
most pernicious sort, evidencing total confusion between accuracy and stability. In
fact, new instabilities sometimes do show up on larger grids; but old instabilities
never (in our experience) just go away.

Forced to live with modest grid sizes, some people recommend going to higher-
order methods in an attempt to improve accuracy. This is very dangerous. Unless the
solution you are looking for is known to be smooth, and the high-order method you

19.3 Initial Value Problems in Multidimensions 845

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

are using is known to be extremely stable, we do not recommend anything higher
than second-order in time (for sets of first-order equations). For spatial differencing,
we recommend the order of the underlying PDEs, perhaps allowing second-order
spatial differencing for first-order-in-space PDEs. When you increase the order of
a differencing method to greater than the order of the original PDEs, you introduce
spurious solutions to the difference equations. This does not create a problem if they
all happen to decay exponentially; otherwise you are going to see all hell break loose!

Lax Method for a Flux-Conservative Equation

As an example, we show how to generalize the Lax method (19.1.15) to two
dimensions for the conservation equation

∂u

∂t
= −∇ · F = −

(
∂Fx
∂x

+
∂Fy
∂y

)
(19.3.1)

Use a spatial grid with

xj = x0 + j∆

yl = y0 + l∆
(19.3.2)

We have chosen ∆x = ∆y ≡ ∆ for simplicity. Then the Lax scheme is

un+1
j,l =

1

4
(unj+1,l + unj−1,l + unj,l+1 + unj,l−1)

− ∆t

2∆
(F nj+1,l − F nj−1,l + F nj,l+1 − F nj,l−1)

(19.3.3)

Note that as an abbreviated notation Fj+1 and Fj−1 refer to Fx, while Fl+1 and
Fl−1 refer to Fy.

Let us carry out a stability analysis for the model advective equation (analog
of 19.1.6) with

Fx = vxu, Fy = vyu (19.3.4)

This requires an eigenmode with two dimensions in space, though still only a simple
dependence on powers of ξ in time,

unj,l = ξneikxj∆eikyl∆ (19.3.5)

Substituting in equation (19.3.3), we find

ξ =
1

2
(cos kx∆ + cos ky∆)− iαx sin kx∆− iαy sin ky∆ (19.3.6)

where

αx =
vx∆t

∆
, αy =

vy∆t

∆
(19.3.7)

846 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The expression for |ξ|2 can be manipulated into the form

|ξ|2 = 1− (sin2 kx∆ + sin2 ky∆)

[
1

2
− (α2

x + α2
y)

]
− 1

4
(cos kx∆− cos ky∆)2 − (αy sin kx∆− αx sin ky∆)2

(19.3.8)

The last two terms are negative, and so the stability requirement |ξ|2 ≤ 1 becomes

1

2
− (α2

x + α2
y) ≥ 0 (19.3.9)

or

∆t ≤ ∆√
2(v2

x + v2
y)1/2

(19.3.10)

This is an example of the general result for the N -dimensional Courant
condition: If |v| is the maximum propagation velocity in the problem, then

∆t ≤ ∆√
N |v|

(19.3.11)

is the Courant condition.

Diffusion Equation in Multidimensions

Let us consider the two-dimensional diffusion equation,

∂u

∂t
= D

(
∂2u

∂x2
+
∂2u

∂y2

)
(19.3.12)

An explicit method, such as FTCS, can be generalized from the one-dimensional
case in the obvious way. However, we have seen that diffusive problems are usually
best treated implicitly. Suppose we try to implement the Crank-Nicholson scheme
in two dimensions. This would give us

un+1
j,l = unj,l +

1

2
α
(
δ2
xu

n+1
j,l + δ2

xu
n
j,l + δ2

yu
n+1
j,l + δ2

yu
n
j,l

)
(19.3.13)

Here

α ≡ D∆t

∆2
∆ ≡ ∆x = ∆y (19.3.14)

δ2
xu

n
j,l ≡ unj+1,l − 2unj,l + unj−1,l (19.3.15)

and similarly for δ2
yu

n
j,l. This is certainly a viable scheme; the problem arises in

solving the coupled linear equations. Whereas in one space dimension the system
was tridiagonal, that is no longer true, though the matrix is still very sparse. One
possibility is to use a suitable sparse matrix technique (see §2.7 and §19.0).

Another possibility, which we generally prefer, is a slightly different way of
generalizing the Crank-Nicholson algorithm. It is still second-order accurate in time
and space, and unconditionally stable, but the equations are easier to solve than

19.3 Initial Value Problems in Multidimensions 847

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

(19.3.13). Called the alternating-direction implicit method (ADI), this embodies the
powerful concept of operator splitting or time splitting, about which we will say
more below. Here, the idea is to divide each timestep into two steps of size ∆t/2.
In each substep, a different dimension is treated implicitly:

u
n+1/2
j,l = unj,l +

1

2
α
(
δ2
xu

n+1/2
j,l + δ2

yu
n
j,l

)
un+1
j,l = u

n+1/2
j,l +

1

2
α
(
δ2
xu

n+1/2
j,l + δ2

yu
n+1
j,l

) (19.3.16)

The advantage of this method is that each substep requires only the solution of a
simple tridiagonal system.

Operator Splitting Methods Generally

The basic idea of operator splitting, which is also called time splitting or the
method of fractional steps, is this: Suppose you have an initial value equation of
the form

∂u

∂t
= Lu (19.3.17)

where L is some operator. While L is not necessarily linear, suppose that it can at
least be written as a linear sum of m pieces, which act additively on u,

Lu = L1u+ L2u+ · · ·+ Lmu (19.3.18)

Finally, suppose that for each of the pieces, you already know a differencing scheme
for updating the variable u from timestep n to timestep n + 1, valid if that piece
of the operator were the only one on the right-hand side. We will write these
updatings symbolically as

un+1 = U1(un,∆t)

un+1 = U2(un,∆t)

· · ·

un+1 = Um(un,∆t)

(19.3.19)

Now, one form of operator splitting would be to get from n to n + 1 by the
following sequence of updatings:

un+(1/m) = U1(un,∆t)

un+(2/m) = U2(un+(1/m),∆t)

· · ·

un+1 = Um(un+(m−1)/m,∆t)

(19.3.20)

848 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

For example, a combined advective-diffusion equation, such as

∂u

∂t
= −v∂u

∂x
+D

∂2u

∂x2
(19.3.21)

might profitably use an explicit scheme for the advective term combined with a
Crank-Nicholson or other implicit scheme for the diffusion term.

The alternating-direction implicit (ADI) method, equation (19.3.16), is an
example of operator splitting with a slightly different twist. Let us reinterpret
(19.3.19) to have a different meaning: Let U1 now denote an updating method that
includes algebraically all the pieces of the total operator L, but which is desirably
stable only for the L1 piece; likewise U2, . . .Um. Then a method of getting from
un to un+1 is

un+1/m = U1(un,∆t/m)

un+2/m = U2(un+1/m,∆t/m)

· · ·

un+1 = Um(un+(m−1)/m,∆t/m)

(19.3.22)

The timestep for each fractional step in (19.3.22) is now only 1/m of the full timestep,
because each partial operation acts with all the terms of the original operator.

Equation (19.3.22) is usually, though not always, stable as a differencing scheme
for the operator L. In fact, as a rule of thumb, it is often sufficient to have stableUi’s
only for the operator pieces having the highest number of spatial derivatives — the
other Ui’s can be unstable — to make the overall scheme stable!

It is at this point that we turn our attention from initial value problems to
boundary value problems. These will occupy us for the remainder of the chapter.

CITED REFERENCES AND FURTHER READING:

Ames, W.F. 1977, Numerical Methods for Partial Differential Equations, 2nd ed. (New York:
Academic Press).

19.4 Fourier and Cyclic Reduction Methods for
Boundary Value Problems

As discussed in §19.0, most boundary value problems (elliptic equations, for
example) reduce to solving large sparse linear systems of the form

A · u = b (19.4.1)

either once, for boundary value equations that are linear, or iteratively, for boundary
value equations that are nonlinear.

19.4 Fourier and Cyclic Reduction Methods 849

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Two important techniques lead to “rapid” solution of equation (19.4.1) when
the sparse matrix is of certain frequently occurring forms. The Fourier transform
method is directly applicable when the equations have coefficients that are constant
in space. The cyclic reduction method is somewhat more general; its applicability
is related to the question of whether the equations are separable (in the sense of
“separation of variables”). Both methods require the boundaries to coincide with
the coordinate lines. Finally, for some problems, there is a powerful combination
of these two methods called FACR (Fourier Analysis and Cyclic Reduction). We
now consider each method in turn, using equation (19.0.3), with finite-difference
representation (19.0.6), as a model example. Generally speaking, the methods in this
section are faster, when they apply, than the simpler relaxation methods discussed
in §19.5; but they are not necessarily faster than the more complicated multigrid
methods discussed in §19.6.

Fourier Transform Method

The discrete inverse Fourier transform in both x and y is

ujl =
1

JL

J−1∑
m=0

L−1∑
n=0

ûmne
−2πijm/Je−2πiln/L (19.4.2)

This can be computed using the FFT independently in each dimension, or else all at
once via the routine fourn of §12.4 or the routine rlft3 of §12.5. Similarly,

ρjl =
1

JL

J−1∑
m=0

L−1∑
n=0

ρ̂mne
−2πijm/Je−2πiln/L (19.4.3)

If we substitute expressions (19.4.2) and (19.4.3) in our model problem (19.0.6),
we find

ûmn

(
e2πim/J + e−2πim/J + e2πin/L + e−2πin/L − 4

)
= ρ̂mn∆2 (19.4.4)

or

ûmn =
ρ̂mn∆2

2

(
cos

2πm

J
+ cos

2πn

L
− 2

) (19.4.5)

Thus the strategy for solving equation (19.0.6) by FFT techniques is:
• Compute ρ̂mn as the Fourier transform

ρ̂mn =

J−1∑
j=0

L−1∑
l=0

ρjl e
2πimj/Je2πinl/L (19.4.6)

• Compute ûmn from equation (19.4.5).

850 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

• Compute ujl by the inverse Fourier transform (19.4.2).
The above procedure is valid for periodic boundary conditions. In other words,

the solution satisfies

ujl = uj+J,l = uj,l+L (19.4.7)

Next consider a Dirichlet boundary conditionu= 0 on the rectangular boundary.
Instead of the expansion (19.4.2), we now need an expansion in sine waves:

ujl =
2

J

2

L

J−1∑
m=1

L−1∑
n=1

ûmn sin
πjm

J
sin

πln

L
(19.4.8)

This satisfies the boundary conditions that u = 0 at j = 0, J and at l = 0, L. If we
substitute this expansion and the analogous one for ρjl into equation (19.0.6), we
find that the solution procedure parallels that for periodic boundary conditions:

• Compute ρ̂mn by the sine transform

ρ̂mn =

J−1∑
j=1

L−1∑
l=1

ρjl sin
πjm

J
sin

πln

L
(19.4.9)

(A fast sine transform algorithm was given in §12.3.)
• Compute ûmn from the expression analogous to (19.4.5),

ûmn =
∆2ρ̂mn

2
(

cos
πm

J
+ cos

πn

L
− 2
) (19.4.10)

• Compute ujl by the inverse sine transform (19.4.8).
If we have inhomogeneous boundary conditions, for example u = 0 on all

boundaries except u = f(y) on the boundary x = J∆, we have to add to the above
solution a solution uH of the homogeneous equation

∂2u

∂x2
+
∂2u

∂y2
= 0 (19.4.11)

that satisfies the required boundary conditions. In the continuum case, this would
be an expression of the form

uH =
∑
n

An sinh
nπx

J∆
sin

nπy

L∆
(19.4.12)

where An would be found by requiring that u = f(y) at x = J∆. In the discrete
case, we have

uHjl =
2

L

L−1∑
n=1

An sinh
πnj

J
sin

πnl

L
(19.4.13)

19.4 Fourier and Cyclic Reduction Methods 851

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

If f(y = l∆) ≡ fl, then we get An from the inverse formula

An =
1

sinh πn

L−1∑
l=1

fl sin
πnl

L
(19.4.14)

The complete solution to the problem is

u = ujl + uHjl (19.4.15)

By adding appropriate terms of the form (19.4.12), we can handle inhomogeneous
terms on any boundary surface.

A much simpler procedure for handling inhomogeneous terms is to note that
whenever boundary terms appear on the left-hand side of (19.0.6), they can be taken
over to the right-hand side since they are known. The effective source term is
therefore ρjl plus a contribution from the boundary terms. To implement this idea
formally, write the solution as

u = u′ + uB (19.4.16)

where u′ = 0 on the boundary, while uB vanishes everywhere except on the
boundary. There it takes on the given boundary value. In the above example, the
only nonzero values of uB would be

uBJ,l = fl (19.4.17)

The model equation (19.0.3) becomes

∇2u′ = −∇2uB + ρ (19.4.18)

or, in finite-difference form,

u′j+1,l + u′j−1,l + u′j,l+1 + u′j,l−1 − 4u′j,l =

− (uBj+1,l + uBj−1,l + uBj,l+1 + uBj,l−1 − 4uBj,l) + ∆2ρj,l
(19.4.19)

All the uB terms in equation (19.4.19) vanish except when the equation is evaluated
at j = J − 1, where

u′J,l + u′J−2,l + u′J−1,l+1 + u′J−1,l−1 − 4u′J−1,l = −fl + ∆2ρJ−1,l (19.4.20)

Thus the problem is now equivalent to the case of zero boundary conditions, except
that one row of the source term is modified by the replacement

∆2ρJ−1,l → ∆2ρJ−1,l − fl (19.4.21)

The case of Neumann boundary conditions ∇u = 0 is handled by the cosine
expansion (12.3.17):

ujl =
2

J

2

L

J∑′′

m=0

L∑′′

n=0

ûmn cos
πjm

J
cos

πln

L
(19.4.22)

852 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Here the double prime notation means that the terms for m = 0 and m = J should
be multiplied by 1

2 , and similarly for n = 0 and n = L. Inhomogeneous terms
∇u = g can be again included by adding a suitable solution of the homogeneous
equation, or more simply by taking boundary terms over to the right-hand side.
For example, the condition

∂u

∂x
= g(y) at x = 0 (19.4.23)

becomes
u1,l − u−1,l

2∆
= gl (19.4.24)

where gl ≡ g(y = l∆). Once again we write the solution in the form (19.4.16),
where now∇u′ = 0 on the boundary. This time∇uB takes on the prescribed value
on the boundary, but uB vanishes everywhere except just outside the boundary.
Thus equation (19.4.24) gives

uB−1,l = −2∆gl (19.4.25)

All the uB terms in equation (19.4.19) vanish except when j = 0:

u′1,l + u′−1,l + u′0,l+1 + u′0,l−1 − 4u′0,l = 2∆gl + ∆2ρ0,l (19.4.26)

Thus u′ is the solution of a zero-gradient problem, with the source term modified
by the replacement

∆2ρ0,l → ∆2ρ0,l + 2∆gl (19.4.27)

Sometimes Neumann boundary conditions are handled by using a staggered
grid, with the u’s defined midway between zone boundaries so that first derivatives
are centered on the mesh points. You can solve such problems using similar
techniques to those described above if you use the alternative form of the cosine
transform, equation (12.3.23).

Cyclic Reduction

Evidently the FFT method works only when the original PDE has constant
coefficients, and boundaries that coincide with the coordinate lines. An alternative
algorithm, which can be used on somewhat more general equations, is called cyclic
reduction (CR).

We illustrate cyclic reduction on the equation

∂2u

∂x2
+
∂2u

∂y2
+ b(y)

∂u

∂y
+ c(y)u = g(x, y) (19.4.28)

This form arises very often in practice from the Helmholtz or Poisson equations in
polar, cylindrical, or spherical coordinate systems. More general separable equations
are treated in [1].

19.4 Fourier and Cyclic Reduction Methods 853

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The finite-difference form of equation (19.4.28) can be written as a set of
vector equations

uj−1 + T · uj + uj+1 = gj∆
2 (19.4.29)

Here the index j comes from differencing in the x-direction, while the y-differencing
(denoted by the index l previously) has been left in vector form. The matrix T
has the form

T = B− 21 (19.4.30)

where the 21 comes from thex-differencing and the matrix B from the y-differencing.
The matrix B, and hence T, is tridiagonal with variable coefficients.

The CR method is derived by writing down three successive equations like
(19.4.29):

uj−2 + T · uj−1 + uj = gj−1∆2

uj−1 + T · uj + uj+1 = gj∆
2

uj + T · uj+1 + uj+2 = gj+1∆2

(19.4.31)

Matrix-multiplying the middle equation by −T and then adding the three equations,
we get

uj−2 + T(1) · uj + uj+2 = g(1)
j ∆2 (19.4.32)

This is an equation of the same form as (19.4.29), with

T(1) = 21− T2

g(1)
j = ∆2(gj−1 − T · gj + gj+1)

(19.4.33)

After one level of CR, we have reduced the number of equations by a factor of
two. Since the resulting equations are of the same form as the original equation, we
can repeat the process. Taking the number of mesh points to be a power of 2 for
simplicity, we finally end up with a single equation for the central line of variables:

T(f) · uJ/2 = ∆2g(f)
J/2 − u0 − uJ (19.4.34)

Here we have moved u0 and uJ to the right-hand side because they are known
boundary values. Equation (19.4.34) can be solved for uJ/2 by the standard
tridiagonal algorithm. The two equations at level f − 1 involve uJ/4 and u3J/4. The
equation for uJ/4 involves u0 and uJ/2, both of which are known, and hence can be
solved by the usual tridiagonal routine. A similar result holds true at every stage,
so we end up solving J − 1 tridiagonal systems.

In practice, equations (19.4.33) should be rewritten to avoid numerical instabil-
ity. For these and other practical details, refer to [2].

854 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

FACR Method

The best way to solve equations of the form (19.4.28), including the constant
coefficient problem (19.0.3), is a combination of Fourier analysis and cyclic reduction,
the FACR method [3-6]. If at the rth stage of CR we Fourier analyze the equations of
the form (19.4.32) along y, that is, with respect to the suppressed vector index, we
will have a tridiagonal system in the x-direction for each y-Fourier mode:

ûkj−2r + λ
(r)
k ûkj + ûkj+2r = ∆2g

(r)k
j (19.4.35)

Here λ(r)
k is the eigenvalue of T(r) corresponding to the kth Fourier mode. For

the equation (19.0.3), equation (19.4.5) shows that λ(r)
k will involve terms like

cos(2πk/L)− 2 raised to a power. Solve the tridiagonal systems for ûkj at the levels
j = 2r, 2 × 2r, 4 × 2r, ..., J − 2r. Fourier synthesize to get the y-values on these
x-lines. Then fill in the intermediate x-lines as in the original CR algorithm.

The trick is to choose the number of levels of CR so as to minimize the total
number of arithmetic operations. One can show that for a typical case of a 128×128
mesh, the optimal level is r = 2; asymptotically, r → log2(log2 J).

A rough estimate of running times for these algorithms for equation (19.0.3)
is as follows: The FFT method (in both x and y) and the CR method are roughly
comparable. FACR with r = 0 (that is, FFT in one dimension and solve the
tridiagonal equations by the usual algorithm in the other dimension) gives about a
factor of two gain in speed. The optimal FACR with r = 2 gives another factor
of two gain in speed.

CITED REFERENCES AND FURTHER READING:

Swartzrauber, P.N. 1977, SIAM Review, vol. 19, pp. 490–501. [1]

Buzbee, B.L, Golub, G.H., and Nielson, C.W. 1970, SIAM Journal on Numerical Analysis, vol. 7,
pp. 627–656; see also op. cit. vol. 11, pp. 753–763. [2]

Hockney, R.W. 1965, Journal of the Association for Computing Machinery, vol. 12, pp. 95–113. [3]

Hockney, R.W. 1970, in Methods of Computational Physics, vol. 9 (New York: Academic Press),
pp. 135–211. [4]

Hockney, R.W., and Eastwood, J.W. 1981, Computer Simulation Using Particles (New York:
McGraw-Hill), Chapter 6. [5]

Temperton, C. 1980, Journal of Computational Physics, vol. 34, pp. 314–329. [6]

19.5 Relaxation Methods for Boundary Value
Problems

As we mentioned in §19.0, relaxation methods involve splitting the sparse
matrix that arises from finite differencing and then iterating until a solution is found.

There is another way of thinking about relaxation methods that is somewhat
more physical. Suppose we wish to solve the elliptic equation

Lu = ρ (19.5.1)

19.5 Relaxation Methods for Boundary Value Problems 855

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

where L represents some elliptic operator and ρ is the source term. Rewrite the
equation as a diffusion equation,

∂u

∂t
= Lu− ρ (19.5.2)

An initial distribution u relaxes to an equilibrium solution as t → ∞. This
equilibrium has all time derivatives vanishing. Therefore it is the solution of the
original elliptic problem (19.5.1). We see that all the machinery of §19.2, on diffusive
initial value equations, can be brought to bear on the solution of boundary value
problems by relaxation methods.

Let us apply this idea to our model problem (19.0.3). The diffusion equation is

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
− ρ (19.5.3)

If we use FTCS differencing (cf. equation 19.2.4), we get

un+1
j,l = unj,l +

∆t

∆2

(
unj+1,l + unj−1,l + unj,l+1 + unj,l−1 − 4unj,l

)
− ρj,l∆t (19.5.4)

Recall from (19.2.6) that FTCS differencing is stable in one spatial dimension only if
∆t/∆2 ≤ 1

2 . In two dimensions this becomes ∆t/∆2 ≤ 1
4 . Suppose we try to take

the largest possible timestep, and set ∆t = ∆2/4. Then equation (19.5.4) becomes

un+1
j,l =

1

4

(
unj+1,l + unj−1,l + unj,l+1 + unj,l−1

)
− ∆2

4
ρj,l (19.5.5)

Thus the algorithm consists of using the average of u at its four nearest-neighbor
points on the grid (plus the contribution from the source). This procedure is then
iterated until convergence.

This method is in fact a classical method with origins dating back to the
last century, called Jacobi’s method (not to be confused with the Jacobi method
for eigenvalues). The method is not practical because it converges too slowly.
However, it is the basis for understanding the modern methods, which are always
compared with it.

Another classical method is the Gauss-Seidel method, which turns out to be
important in multigrid methods (§19.6). Here we make use of updated values of u on
the right-hand side of (19.5.5) as soon as they become available. In other words, the
averaging is done “in place” instead of being “copied” from an earlier timestep to a
later one. If we are proceeding along the rows, incrementing j for fixed l, we have

un+1
j,l =

1

4

(
unj+1,l + un+1

j−1,l + unj,l+1 + un+1
j,l−1

)
− ∆2

4
ρj,l (19.5.6)

This method is also slowly converging and only of theoretical interest when used by
itself, but some analysis of it will be instructive.

Let us look at the Jacobi and Gauss-Seidel methods in terms of the matrix
splitting concept. We change notation and call u “x,” to conform to standard matrix
notation. To solve

A · x = b (19.5.7)

856 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

we can consider splitting A as

A = L + D + U (19.5.8)

where D is the diagonal part of A, L is the lower triangle of A with zeros on the
diagonal, and U is the upper triangle of A with zeros on the diagonal.

In the Jacobi method we write for the rth step of iteration

D · x(r) = −(L + U) · x(r−1) + b (19.5.9)

For our model problem (19.5.5), D is simply the identity matrix. The Jacobi method
converges for matrices A that are “diagonally dominant” in a sense that can be
made mathematically precise. For matrices arising from finite differencing, this
condition is usually met.

What is the rate of convergence of the Jacobi method? A detailed analysis is
beyond our scope, but here is some of the flavor: The matrix −D−1 · (L + U) is
the iteration matrix which, apart from an additive term, maps one set of x’s into the
next. The iteration matrix has eigenvalues, each one of which reflects the factor by
which the amplitude of a particular eigenmode of undesired residual is suppressed
during one iteration. Evidently those factors had better all have modulus < 1 for
the relaxation to work at all! The rate of convergence of the method is set by the
rate for the slowest-decaying eigenmode, i.e., the factor with largest modulus. The
modulus of this largest factor, therefore lying between 0 and 1, is called the spectral
radius of the relaxation operator, denoted ρs .

The number of iterations r required to reduce the overall error by a factor
10−p is thus estimated by

r ≈ p ln 10

(− ln ρs)
(19.5.10)

In general, the spectral radius ρs goes asymptotically to the value 1 as the grid
size J is increased, so that more iterations are required. For any given equation,
grid geometry, and boundary condition, the spectral radius can, in principle, be
computed analytically. For example, for equation (19.5.5) on a J × J grid with
Dirichlet boundary conditions on all four sides, the asymptotic formula for large
J turns out to be

ρs ' 1− π2

2J2
(19.5.11)

The number of iterations r required to reduce the error by a factor of 10−p is thus

r ' 2pJ2 ln 10

π2
' 1

2
pJ2 (19.5.12)

In other words, the number of iterations is proportional to the number of mesh points,
J2. Since 100 × 100 and larger problems are common, it is clear that the Jacobi
method is only of theoretical interest.

19.5 Relaxation Methods for Boundary Value Problems 857

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The Gauss-Seidel method, equation (19.5.6), corresponds to the matrix de-
composition

(L + D) · x(r) = −U · x(r−1) + b (19.5.13)

The fact that L is on the left-hand side of the equation follows from the updating
in place, as you can easily check if you write out (19.5.13) in components. One
can show [1-3] that the spectral radius is just the square of the spectral radius of the
Jacobi method. For our model problem, therefore,

ρs ' 1− π2

J2
(19.5.14)

r ' pJ2 ln 10

π2
' 1

4
pJ2 (19.5.15)

The factor of two improvement in the number of iterations over the Jacobi method
still leaves the method impractical.

Successive Overrelaxation (SOR)

We get a better algorithm — one that was the standard algorithm until the 1970s
— if we make an overcorrection to the value of x(r) at the rth stage of Gauss-Seidel
iteration, thus anticipating future corrections. Solve (19.5.13) for x(r), add and
subtract x(r−1) on the right-hand side, and hence write the Gauss-Seidel method as

x(r) = x(r−1) − (L + D)−1 · [(L + D + U) · x(r−1) − b] (19.5.16)

The term in square brackets is just the residual vector ξ(r−1), so

x(r) = x(r−1) − (L + D)−1 · ξ(r−1) (19.5.17)

Now overcorrect, defining

x(r) = x(r−1) − ω(L + D)−1 · ξ(r−1) (19.5.18)

Here ω is called the overrelaxation parameter, and the method is called successive
overrelaxation (SOR).

The following theorems can be proved [1-3]:
• The method is convergent only for 0 < ω < 2. If 0 < ω < 1, we speak

of underrelaxation.
• Under certain mathematical restrictions generally satisfied by matrices

arising from finite differencing, only overrelaxation (1 < ω < 2) can give
faster convergence than the Gauss-Seidel method.

• If ρJacobi is the spectral radius of the Jacobi iteration (so that the square
of it is the spectral radius of the Gauss-Seidel iteration), then the optimal
choice for ω is given by

ω =
2

1 +
√

1− ρ2
Jacobi

(19.5.19)

858 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

• For this optimal choice, the spectral radius for SOR is

ρSOR =

(
ρJacobi

1 +
√

1− ρ2
Jacobi

)2

(19.5.20)

As an application of the above results, consider our model problem for which
ρJacobi is given by equation (19.5.11). Then equations (19.5.19) and (19.5.20) give

ω ' 2

1 + π/J
(19.5.21)

ρSOR ' 1− 2π

J
for large J (19.5.22)

Equation (19.5.10) gives for the number of iterations to reduce the initial error by
a factor of 10−p,

r ' pJ ln 10

2π
' 1

3
pJ (19.5.23)

Comparing with equation (19.5.12) or (19.5.15), we see that optimal SOR requires
of order J iterations, as opposed to of order J2. Since J is typically 100 or larger,
this makes a tremendous difference! Equation (19.5.23) leads to the mnemonic
that 3-figure accuracy (p = 3) requires a number of iterations equal to the number
of mesh points along a side of the grid. For 6-figure accuracy, we require about
twice as many iterations.

How do we choose ω for a problem for which the answer is not known
analytically? That is just the weak point of SOR! The advantages of SOR obtain
only in a fairly narrow window around the correct value of ω. It is better to take ω
slightly too large, rather than slightly too small, but best to get it right.

One way to choose ω is to map your problem approximately onto a known
problem, replacing the coefficients in the equation by average values. Note, however,
that the known problem must have the same grid size and boundary conditions as the
actual problem. We give for reference purposes the value of ρJacobi for our model
problem on a rectangular J × L grid, allowing for the possibility that ∆x 6= ∆y:

ρJacobi =

cos
π

J
+

(
∆x

∆y

)2

cos
π

L

1 +

(
∆x

∆y

)2 (19.5.24)

Equation (19.5.24) holds for homogeneous Dirichlet or Neumann boundary condi-
tions. For periodic boundary conditions, make the replacement π → 2π.

A second way, which is especially useful if you plan to solve many similar
elliptic equations each time with slightly different coefficients, is to determine the
optimum value ω empirically on the first equation and then use that value for the
remaining equations. Various automated schemes for doing this and for “seeking
out” the best values of ω are described in the literature.

While the matrix notation introduced earlier is useful for theoretical analyses,
for practical implementation of the SOR algorithm we need explicit formulas.

19.5 Relaxation Methods for Boundary Value Problems 859

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Consider a general second-order elliptic equation in x and y, finite differenced on
a square as for our model equation. Corresponding to each row of the matrix A
is an equation of the form

aj,luj+1,l + bj,luj−1,l + cj,luj,l+1 + dj,luj,l−1 + ej,luj,l = fj,l (19.5.25)

For our model equation, we had a = b = c = d = 1, e = −4. The quantity
f is proportional to the source term. The iterative procedure is defined by solving
(19.5.25) for uj,l:

u*j,l =
1

ej,l
(fj,l − aj,luj+1,l − bj,luj−1,l − cj,luj,l+1 − dj,luj,l−1) (19.5.26)

Then unew
j,l is a weighted average

unew
j,l = ωu*j,l + (1 − ω)uold

j,l (19.5.27)

We calculate it as follows: The residual at any stage is

ξj,l = aj,luj+1,l + bj,luj−1,l + cj,luj,l+1 + dj,luj,l−1 + ej,luj,l − fj,l (19.5.28)

and the SOR algorithm (19.5.18) or (19.5.27) is

unew
j,l = uold

j,l − ω
ξj,l
ej,l

(19.5.29)

This formulation is very easy to program, and the norm of the residual vector ξj,l
can be used as a criterion for terminating the iteration.

Another practical point concerns the order in which mesh points are processed.
The obvious strategy is simply to proceed in order down the rows (or columns).
Alternatively, suppose we divide the mesh into “odd” and “even” meshes, like the
red and black squares of a checkerboard. Then equation (19.5.26) shows that the
odd points depend only on the even mesh values and vice versa. Accordingly,
we can carry out one half-sweep updating the odd points, say, and then another
half-sweep updating the even points with the new odd values. For the version of
SOR implemented below, we shall adopt odd-even ordering.

The last practical point is that in practice the asymptotic rate of convergence
in SOR is not attained until of order J iterations. The error often grows by a
factor of 20 before convergence sets in. A trivial modification to SOR resolves this
problem. It is based on the observation that, while ω is the optimum asymptotic
relaxation parameter, it is not necessarily a good initial choice. In SOR with
Chebyshev acceleration, one uses odd-even ordering and changes ω at each half-
sweep according to the following prescription:

ω(0) = 1

ω(1/2) = 1/(1− ρ2
Jacobi/2)

ω(n+1/2) = 1/(1− ρ2
Jacobiω

(n)/4), n = 1/2, 1, ...,∞

ω(∞) → ωoptimal

(19.5.30)

860 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The beauty of Chebyshev acceleration is that the norm of the error always decreases
with each iteration. (This is the norm of the actual error in uj,l. The norm of
the residual ξj,l need not decrease monotonically.) While the asymptotic rate of
convergence is the same as ordinary SOR, there is never any excuse for not using
Chebyshev acceleration to reduce the total number of iterations required.

Here we give a routine for SOR with Chebyshev acceleration.

SUBROUTINE sor(a,b,c,d,e,f,u,jmax,rjac)
INTEGER jmax,MAXITS
DOUBLE PRECISION rjac,a(jmax,jmax),b(jmax,jmax),

* c(jmax,jmax),d(jmax,jmax),e(jmax,jmax),
* f(jmax,jmax),u(jmax,jmax),EPS

PARAMETER (MAXITS=1000,EPS=1.d-5)
Successive overrelaxation solution of equation (19.5.25) with Chebyshev acceleration. a,
b, c, d, e, and f are input as the coefficients of the equation, each dimensioned to the
grid size JMAX × JMAX. u is input as the initial guess to the solution, usually zero, and
returns with the final value. rjac is input as the spectral radius of the Jacobi iteration,
or an estimate of it.

INTEGER ipass,j,jsw,l,lsw,n
DOUBLE PRECISION anorm,anormf,

* omega,resid Double precision is a good idea for JMAX bigger than about 25.
anormf=0.d0 Compute initial norm of residual and terminate iteration when

norm has been reduced by a factor EPS.do 12 j=2,jmax-1
do 11 l=2,jmax-1

anormf=anormf+abs(f(j,l)) Assumes initial u is zero.
enddo 11

enddo 12

omega=1.d0
do 16 n=1,MAXITS

anorm=0.d0
jsw=1
do 15 ipass=1,2 Odd-even ordering.

lsw=jsw
do 14 j=2,jmax-1

do 13 l=lsw+1,jmax-1,2
resid=a(j,l)*u(j+1,l)+b(j,l)*u(j-1,l)+

* c(j,l)*u(j,l+1)+d(j,l)*u(j,l-1)+
* e(j,l)*u(j,l)-f(j,l)

anorm=anorm+abs(resid)
u(j,l)=u(j,l)-omega*resid/e(j,l)

enddo 13

lsw=3-lsw
enddo 14

jsw=3-jsw
if(n.eq.1.and.ipass.eq.1) then

omega=1.d0/(1.d0-.5d0*rjac**2)
else

omega=1.d0/(1.d0-.25d0*rjac**2*omega)
endif

enddo 15

if(anorm.lt.EPS*anormf)return
enddo 16

pause ’MAXITS exceeded in sor’
END

The main advantage of SOR is that it is very easy to program. Its main
disadvantage is that it is still very inefficient on large problems.

19.5 Relaxation Methods for Boundary Value Problems 861

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

ADI (Alternating-Direction Implicit) Method

The ADI method of §19.3 for diffusion equations can be turned into a relaxation
method for elliptic equations [1-4]. In §19.3, we discussed ADI as a method for
solving the time-dependent heat-flow equation

∂u

∂t
= ∇2u− ρ (19.5.31)

By letting t→∞ one also gets an iterative method for solving the elliptic equation

∇2u = ρ (19.5.32)

In either case, the operator splitting is of the form

L = Lx + Ly (19.5.33)

where Lx represents the differencing in x and Ly that in y.
For example, in our model problem (19.0.6) with ∆x = ∆y = ∆, we have

Lxu = 2uj,l − uj+1,l − uj−1,l

Lyu = 2uj,l − uj,l+1 − uj,l−1

(19.5.34)

More complicated operators may be similarly split, but there is some art involved.
A bad choice of splitting can lead to an algorithm that fails to converge. Usually
one tries to base the splitting on the physical nature of the problem. We know for
our model problem that an initial transient diffuses away, and we set up the x and
y splitting to mimic diffusion in each dimension.

Having chosen a splitting, we difference the time-dependent equation (19.5.31)
implicitly in two half-steps:

un+1/2 − un
∆t/2

= −Lxu
n+1/2 + Lyun

∆2
− ρ

un+1 − un+1/2

∆t/2
= −Lxu

n+1/2 + Lyun+1

∆2
− ρ

(19.5.35)

(cf. equation 19.3.16). Here we have suppressed the spatial indices (j, l). In matrix
notation, equations (19.5.35) are

(Lx + r1) · un+1/2 = (r1− Ly) · un −∆2ρ (19.5.36)

(Ly + r1) · un+1 = (r1− Lx) · un+1/2 −∆2ρ (19.5.37)

where

r ≡ 2∆2

∆t
(19.5.38)

The matrices on the left-hand sides of equations (19.5.36) and (19.5.37) are
tridiagonal (and usually positive definite), so the equations can be solved by the

862 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

standard tridiagonal algorithm. Given un, one solves (19.5.36) for un+1/2, substitutes
on the right-hand side of (19.5.37), and then solves for un+1. The key question
is how to choose the iteration parameter r, the analog of a choice of timestep for
an initial value problem.

As usual, the goal is to minimize the spectral radius of the iteration matrix.
Although it is beyond our scope to go into details here, it turns out that, for the
optimal choice of r, the ADI method has the same rate of convergence as SOR.
The individual iteration steps in the ADI method are much more complicated than
in SOR, so the ADI method would appear to be inferior. This is in fact true if we
choose the same parameter r for every iteration step. However, it is possible to
choose a different r for each step. If this is done optimally, then ADI is generally
more efficient than SOR. We refer you to the literature [1-4] for details.

Our reason for not fully implementing ADI here is that, in most applications,
it has been superseded by the multigrid methods described in the next section. Our
advice is to use SOR for trivial problems (e.g., 20 × 20), or for solving a larger
problem once only, where ease of programming outweighs expense of computer
time. Occasionally, the sparse matrix methods of §2.7 are useful for solving a set
of difference equations directly. For production solution of large elliptic problems,
however, multigrid is now almost always the method of choice.

CITED REFERENCES AND FURTHER READING:

Hockney, R.W., and Eastwood, J.W. 1981, Computer Simulation Using Particles (New York:
McGraw-Hill), Chapter 6.

Young, D.M. 1971, Iterative Solution of Large Linear Systems (New York: Academic Press). [1]

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§§8.3–8.6. [2]

Varga, R.S. 1962, Matrix Iterative Analysis (Englewood Cliffs, NJ: Prentice-Hall). [3]

Spanier, J. 1967, in Mathematical Methods for Digital Computers, Volume 2 (New York: Wiley),
Chapter 11. [4]

19.6 Multigrid Methods for Boundary Value
Problems

Practical multigrid methods were first introduced in the 1970s by Brandt. These
methods can solve elliptic PDEs discretized on N grid points in O(N) operations.
The “rapid” direct elliptic solvers discussed in §19.4 solve special kinds of elliptic
equations in O(N logN) operations. The numerical coefficients in these estimates
are such that multigrid methods are comparable to the rapid methods in execution
speed. Unlike the rapid methods, however, the multigrid methods can solve general
elliptic equations with nonconstant coefficients with hardly any loss in efficiency.
Even nonlinear equations can be solved with comparable speed.

Unfortunately there is not a single multigrid algorithm that solves all elliptic
problems. Rather there is a multigrid technique that provides the framework for
solving these problems. You have to adjust the various components of the algorithm
within this framework to solve your specific problem. We can only give a brief

19.6 Multigrid Methods for Boundary Value Problems 863

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

introduction to the subject here. In particular, we will give two sample multigrid
routines, one linear and one nonlinear. By following these prototypes and by
perusing the references [1-4], you should be able to develop routines to solve your
own problems.

There are two related, but distinct, approaches to the use of multigrid techniques.
The first, termed “the multigrid method,” is a means for speeding up the convergence
of a traditional relaxation method, as defined by you on a grid of pre-specified
fineness. In this case, you need define your problem (e.g., evaluate its source terms)
only on this grid. Other, coarser, grids defined by the method can be viewed as
temporary computational adjuncts.

The second approach, termed (perhaps confusingly) “the full multigrid (FMG)
method,” requires you to be able to define your problem on grids of various sizes
(generally by discretizing the same underlying PDE into different-sized sets of finite-
difference equations). In this approach, the method obtains successive solutions on
finer and finer grids. You can stop the solution either at a pre-specified fineness, or
you can monitor the truncation error due to the discretization, quitting only when
it is tolerably small.

In this section we will first discuss the “multigrid method,” then use the concepts
developed to introduce the FMG method. The latter algorithm is the one that we
implement in the accompanying programs.

From One-Grid, through Two-Grid, to Multigrid

The key idea of the multigrid method can be understood by considering the
simplest case of a two-grid method. Suppose we are trying to solve the linear
elliptic problem

Lu = f (19.6.1)

whereL is some linear elliptic operator and f is the source term. Discretize equation
(19.6.1) on a uniform grid with mesh size h. Write the resulting set of linear
algebraic equations as

Lhuh = fh (19.6.2)

Let ũh denote some approximate solution to equation (19.6.2). We will use the
symbol uh to denote the exact solution to the difference equations (19.6.2). Then
the error in ũh or the correction is

vh = uh − ũh (19.6.3)

The residual or defect is

dh = Lhũh − fh (19.6.4)

(Beware: some authors define residual as minus the defect, and there is not universal
agreement about which of these two quantities 19.6.4 defines.) Since Lh is linear,
the error satisfies

Lhvh = −dh (19.6.5)

864 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

At this point we need to make an approximation to Lh in order to find vh. The
classical iteration methods, such as Jacobi or Gauss-Seidel, do this by finding, at
each stage, an approximate solution of the equation

L̂hv̂h = −dh (19.6.6)

where L̂h is a “simpler” operator than Lh. For example, L̂h is the diagonal part of
Lh for Jacobi iteration, or the lower triangle for Gauss-Seidel iteration. The next
approximation is generated by

ũnew
h = ũh + v̂h (19.6.7)

Now consider, as an alternative, a completely different type of approximation
for Lh, one in which we “coarsify” rather than “simplify.” That is, we form some
appropriate approximation LH of Lh on a coarser grid with mesh size H (we will
always take H = 2h, but other choices are possible). The residual equation (19.6.5)
is now approximated by

LHvH = −dH (19.6.8)

Since LH has smaller dimension, this equation will be easier to solve than equation
(19.6.5). To define the defect dH on the coarse grid, we need a restriction operator
R that restricts dh to the coarse grid:

dH = Rdh (19.6.9)

The restriction operator is also called the fine-to-coarse operator or the injection
operator. Once we have a solution ṽH to equation (19.6.8), we need a prolongation
operator P that prolongates or interpolates the correction to the fine grid:

ṽh = P ṽH (19.6.10)

The prolongation operator is also called the coarse-to-fine operator or the inter-
polation operator. Both R and P are chosen to be linear operators. Finally the
approximation ũh can be updated:

ũnew
h = ũh + ṽh (19.6.11)

One step of this coarse-grid correction scheme is thus:

Coarse-Grid Correction

• Compute the defect on the fine grid from (19.6.4).
• Restrict the defect by (19.6.9).
• Solve (19.6.8) exactly on the coarse grid for the correction.
• Interpolate the correction to the fine grid by (19.6.10).

19.6 Multigrid Methods for Boundary Value Problems 865

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

• Compute the next approximation by (19.6.11).

Let’s contrast the advantages and disadvantages of relaxation and the coarse-grid
correction scheme. Consider the error vh expanded into a discrete Fourier series. Call
the components in the lower half of the frequency spectrum the smooth components
and the high-frequency components the nonsmooth components. We have seen that
relaxation becomes very slowly convergent in the limit h→ 0, i.e., when there are a
large number of mesh points. The reason turns out to be that the smooth components
are only slightly reduced in amplitude on each iteration. However, many relaxation
methods reduce the amplitude of the nonsmooth components by large factors on
each iteration: They are good smoothing operators.

For the two-grid iteration, on the other hand, components of the error with
wavelengths <∼ 2H are not even representable on the coarse grid and so cannot be
reduced to zero on this grid. But it is exactly these high-frequency components that
can be reduced by relaxation on the fine grid! This leads us to combine the ideas
of relaxation and coarse-grid correction:

Two-Grid Iteration

• Pre-smoothing: Compute ūh by applying ν1 ≥ 0 steps of a relaxation
method to ũh.

• Coarse-grid correction: As above, using ūh to give ūnew
h .

• Post-smoothing: Compute ũnew
h by applying ν2 ≥ 0 steps of the relaxation

method to ūnew
h .

It is only a short step from the above two-grid method to a multigrid method.
Instead of solving the coarse-grid defect equation (19.6.8) exactly, we can get
an approximate solution of it by introducing an even coarser grid and using the
two-grid iteration method. If the convergence factor of the two-grid method is
small enough, we will need only a few steps of this iteration to get a good enough
approximate solution. We denote the number of such iterations by γ. Obviously
we can apply this idea recursively down to some coarsest grid. There the solution
is found easily, for example by direct matrix inversion or by iterating the relaxation
scheme to convergence.

One iteration of a multigrid method, from finest grid to coarser grids and back
to finest grid again, is called a cycle. The exact structure of a cycle depends on
the value of γ, the number of two-grid iterations at each intermediate stage. The
case γ = 1 is called a V-cycle, while γ = 2 is called a W-cycle (see Figure 19.6.1).
These are the most important cases in practice.

Note that once more than two grids are involved, the pre-smoothing steps after
the first one on the finest grid need an initial approximation for the error v. This
should be taken to be zero.

Smoothing, Restriction, and Prolongation Operators

The most popular smoothing method, and the one you should try first, is
Gauss-Seidel, since it usually leads to a good convergence rate. If we order the mesh
points from 1 to N , then the Gauss-Seidel scheme is

ui = −
(N∑
j=1
j 6=i

Lijuj − fi
) 1

Lii
i = 1, . . . , N (19.6.12)

866 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

E

γ = 2γ = 1

2-grid

3-grid

4-gridS

S

S

S

S

S

E

S

S

S S

E

S

S

S

E

S

S S

E

S

S

S

S

E

S S

E

S

S

S

S

E

S

S S

E

S S

S

Figure 19.6.1. Structure of multigrid cycles. S denotes smoothing, while E denotes exact solution
on the coarsest grid. Each descending line \ denotes restriction (R) and each ascending line / denotes
prolongation (P). The finest grid is at the top level of each diagram. For the V-cycles (γ = 1) the E
step is replaced by one 2-grid iteration each time the number of grid levels is increased by one. For the
W-cycles (γ = 2), each E step gets replaced by two 2-grid iterations.

where new values of u are used on the right-hand side as they become available. The
exact form of the Gauss-Seidel method depends on the ordering chosen for the mesh
points. For typical second-order elliptic equations like our model problem equation
(19.0.3), as differenced in equation (19.0.8), it is usually best to use red-black
ordering, making one pass through the mesh updating the “even” points (like the red
squares of a checkerboard) and another pass updating the “odd” points (the black
squares). When quantities are more strongly coupled along one dimension than
another, one should relax a whole line along that dimension simultaneously. Line
relaxation for nearest-neighbor coupling involves solving a tridiagonal system, and
so is still efficient. Relaxing odd and even lines on successive passes is called zebra
relaxation and is usually preferred over simple line relaxation.

Note that SOR should not be used as a smoothing operator. The overrelaxation
destroys the high-frequency smoothing that is so crucial for the multigrid method.

A succint notation for the prolongation and restriction operators is to give their
symbol. The symbol of P is found by considering vH to be 1 at some mesh point
(x, y), zero elsewhere, and then asking for the values of PvH . The most popular
prolongation operator is simple bilinear interpolation. It gives nonzero values at
the 9 points (x, y), (x+ h, y), . . . , (x− h, y − h), where the values are 1, 1

2
, . . . , 1

4
.

19.6 Multigrid Methods for Boundary Value Problems 867

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Its symbol is therefore 
1
4

1
2

1
4

1
2

1 1
2

1
4

1
2

1
4

 (19.6.13)

The symbol ofR is defined by considering vh to be defined everywhere on the
fine grid, and then asking what is Rvh at (x, y) as a linear combination of these
values. The simplest possible choice forR is straight injection, which means simply
filling each coarse-grid point with the value from the corresponding fine-grid point.
Its symbol is “[1].” However, difficulties can arise in practice with this choice. It
turns out that a safe choice forR is to make it the adjoint operator toP . To define the
adjoint, define the scalar product of two grid functions uh and vh for mesh size h as

〈uh|vh〉h ≡ h2
∑
x,y

uh(x, y)vh(x, y) (19.6.14)

Then the adjoint of P , denoted P†, is defined by

〈uH |P†vh〉H = 〈PuH |vh〉h (19.6.15)

Now takeP to be bilinear interpolation, and choose uH = 1 at (x, y), zero elsewhere.
Set P† = R in (19.6.15) and H = 2h. You will find that

(Rvh)(x,y) = 1
4vh(x, y) + 1

8vh(x+ h, y) + 1
16vh(x+ h, y + h) + · · · (19.6.16)

so that the symbol of R is 
1
16

1
8

1
16

1
8

1
4

1
8

1
16

1
8

1
16

 (19.6.17)

Note the simple rule: The symbol ofR is 1
4 the transpose of the matrix defining the

symbol ofP , equation (19.6.13). This rule is general wheneverR = P† andH = 2h.
The particular choice ofR in (19.6.17) is called full weighting. Another popular

choice for R is half weighting, “halfway” between full weighting and straight
injection. Its symbol is  0 1

8 0
1
8

1
2

1
8

0 1
8 0

 (19.6.18)

A similar notation can be used to describe the difference operator Lh. For
example, the standard differencing of the model problem, equation (19.0.6), is
represented by the five-point difference star

Lh =
1

h2

 0 1 0
1 −4 1
0 1 0

 (19.6.19)

868 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

If you are confronted with a new problem and you are not sure what P and R
choices are likely to work well, here is a safe rule: Suppose mp is the order of the
interpolationP (i.e., it interpolates polynomials of degreemp − 1 exactly). Suppose
mr is the order ofR, and thatR is the adjoint of some P (not necessarily the P you
intend to use). Then if m is the order of the differential operator Lh, you should
satisfy the inequality mp + mr > m. For example, bilinear interpolation and its
adjoint, full weighting, for Poisson’s equation satisfymp +mr = 4 > m = 2.

Of course the P and R operators should enforce the boundary conditions for
your problem. The easiest way to do this is to rewrite the difference equation to
have homogeneous boundary conditions by modifying the source term if necessary
(cf. §19.4). Enforcing homogeneous boundary conditions simply requires the P
operator to produce zeros at the appropriate boundary points. The corresponding
R is then found by R = P†.

Full Multigrid Algorithm

So far we have described multigrid as an iterative scheme, where one starts
with some initial guess on the finest grid and carries out enough cycles (V-cycles,
W-cycles,. . .) to achieve convergence. This is the simplest way to use multigrid:
Simply apply enough cycles until some appropriate convergence criterion is met.
However, efficiency can be improved by using the Full Multigrid Algorithm (FMG),
also known as nested iteration.

Instead of starting with an arbitrary approximation on the finest grid (e.g.,
uh = 0), the first approximation is obtained by interpolating from a coarse-grid
solution:

uh = PuH (19.6.20)

The coarse-grid solution itself is found by a similar FMG process from even coarser
grids. At the coarsest level, you start with the exact solution. Rather than proceed as
in Figure 19.6.1, then, FMG gets to its solution by a series of increasingly tall “N’s,”
each taller one probing a finer grid (see Figure 19.6.2).

Note that P in (19.6.20) need not be the same P used in the multigrid cycles.
It should be at least of the same order as the discretization Lh, but sometimes a
higher-order operator leads to greater efficiency.

It turns out that you usually need one or at most two multigrid cycles at each
level before proceeding down to the next finer grid. While there is theoretical
guidance on the required number of cycles (e.g., [2]), you can easily determine it
empirically. Fix the finest level and study the solution values as you increase the
number of cycles per level. The asymptotic value of the solution is the exact solution
of the difference equations. The difference between this exact solution and the
solution for a small number of cycles is the iteration error. Now fix the number of
cycles to be large, and vary the number of levels, i.e., the smallest value of h used. In
this way you can estimate the truncation error for a given h. In your final production
code, there is no point in using more cycles than you need to get the iteration error
down to the size of the truncation error.

The simple multigrid iteration (cycle) needs the right-hand side f only at the
finest level. FMG needs f at all levels. If the boundary conditions are homogeneous,

19.6 Multigrid Methods for Boundary Value Problems 869

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

4-grid

ncycle = 1

4-grid

ncycle = 2

SS

S

S

S

SS

S

S S

S

EE

S

S

S

S

S

EEE

S S S S

S

EE

S

S

S

E

S

S

S

S

S

E

E

S

S

S

S

E

S

S

S

S

S

E

S S

S

EE

S

S

S

S

S

S

S

S

E

Figure 19.6.2. Structure of cycles for the full multigrid (FMG) method. This method starts on the
coarsest grid, interpolates, and then refines (by “V’s”), the solution onto grids of increasing fineness.

you can use fH = Rfh. This prescription is not always safe for inhomogeneous
boundary conditions. In that case it is better to discretize f on each coarse grid.

Note that the FMG algorithm produces the solution on all levels. It can therefore
be combined with techniques like Richardson extrapolation.

We now give a routine mglin that implements the Full Multigrid Algorithm
for a linear equation, the model problem (19.0.6). It uses red-black Gauss-Seidel
as the smoothing operator, bilinear interpolation for P , and half-weighting for R.
To change the routine to handle another linear problem, all you need do is modify
the subroutines relax, resid, and slvsml appropriately. A feature of the routine
is the dynamical allocation of storage for variables defined on the various grids.
The subroutine maloc emulates the C function malloc. It allows you to write
subroutines that operate on two-dimensional arrays in the usual way, but to allocate
storage for these arrays in the calling program “on the fly” out of a single long
one-dimensional array.

SUBROUTINE mglin(u,n,ncycle)
INTEGER n,ncycle,NPRE,NPOST,NG,MEMLEN
DOUBLE PRECISION u(n,n)
PARAMETER (NG=5,MEMLEN=13*2**(2*NG)/3+14*2**NG+8*NG-100/3)
PARAMETER (NPRE=1,NPOST=1)

C USES addint,copy,fill0,interp,maloc,relax,resid,rstrct,slvsml
Full Multigrid Algorithm for solution of linear elliptic equation, here the model problem
(19.0.6). On input u(1:n,1:n) contains the right-hand side ρ, while on output it returns
the solution. The dimension n is related to the number of grid levels used in the solution,
NG below, by n = 2**NG+ 1. ncycle is the number of V-cycles to be used at each level.
Parameters: NG is the number of grid levels used; MEMLEN is the maximum amount of
memory that can be allocated by calls to maloc; NPRE and NPOST are the number of
relaxation sweeps before and after the coarse-grid correction is computed.

INTEGER j,jcycle,jj,jpost,jpre,mem,nf,ngrid,nn,ires(NG),
* irho(NG),irhs(NG),iu(NG),maloc

DOUBLE PRECISION z

870 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

COMMON /memory/ z(MEMLEN),mem Storage for grid functions is allocated by maloc
from array z.mem=0

nn=n/2+1
ngrid=NG-1
irho(ngrid)=maloc(nn**2) Allocate storage for r.h.s. on grid NG− 1,
call rstrct(z(irho(ngrid)),u,nn) and fill it by restricting from the fine grid.

1 if (nn.gt.3) then Similarly allocate storage and fill r.h.s. on all
coarse grids.nn=nn/2+1

ngrid=ngrid-1
irho(ngrid)=maloc(nn**2)
call rstrct(z(irho(ngrid)),z(irho(ngrid+1)),nn)

goto 1
endif
nn=3
iu(1)=maloc(nn**2)
irhs(1)=maloc(nn**2)
call slvsml(z(iu(1)),z(irho(1))) Initial solution on coarsest grid.
ngrid=NG
do 16 j=2,ngrid Nested iteration loop.

nn=2*nn-1
iu(j)=maloc(nn**2)
irhs(j)=maloc(nn**2)
ires(j)=maloc(nn**2)
call interp(z(iu(j)),z(iu(j-1)),nn) Interpolate from coarse grid to next finer grid.
if (j.ne.ngrid) then

call copy(z(irhs(j)),z(irho(j)),nn) Set up r.h.s.
else

call copy(z(irhs(j)),u,nn)
endif
do 15 jcycle=1,ncycle V-cycle loop.
nf=nn
do 12 jj=j,2,-1 Downward stoke of the V.

do 11 jpre=1,NPRE Pre-smoothing.
call relax(z(iu(jj)),z(irhs(jj)),nf)
enddo 11

call resid(z(ires(jj)),z(iu(jj)),z(irhs(jj)),nf)
nf=nf/2+1
call rstrct(z(irhs(jj-1)),z(ires(jj)),nf)

Restriction of the residual is the next r.h.s.
call fill0(z(iu(jj-1)),nf) Zero for initial guess in next relaxation.

enddo 12

call slvsml(z(iu(1)),z(irhs(1))) Bottom of V: solve on coarsest grid.
nf=3
do 14 jj=2,j Upward stroke of V.

nf=2*nf-1
call addint(z(iu(jj)),z(iu(jj-1)),z(ires(jj)),nf)

Use res for temporary storage inside addint.
do 13 jpost=1,NPOST Post-smoothing.
call relax(z(iu(jj)),z(irhs(jj)),nf)
enddo 13

enddo 14

enddo 15

enddo 16

call copy(u,z(iu(ngrid)),n) Return solution in u.
return
END

SUBROUTINE rstrct(uc,uf,nc)
INTEGER nc
DOUBLE PRECISION uc(nc,nc),uf(2*nc-1,2*nc-1)

Half-weighting restriction. nc is the coarse-grid dimension. The fine-grid solution is input
in uf(1:2*nc-1,1:2*nc-1), the coarse-grid solution is returned in uc(1:nc,1:nc).

INTEGER ic,if,jc,jf

19.6 Multigrid Methods for Boundary Value Problems 871

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

do 12 jc=2,nc-1 Interior points.
jf=2*jc-1
do 11 ic=2,nc-1

if=2*ic-1
uc(ic,jc)=.5d0*uf(if,jf)+.125d0*(uf(if+1,jf)+

* uf(if-1,jf)+uf(if,jf+1)+uf(if,jf-1))
enddo 11

enddo 12

do 13 ic=1,nc Boundary points.
uc(ic,1)=uf(2*ic-1,1)
uc(ic,nc)=uf(2*ic-1,2*nc-1)

enddo 13

do 14 jc=1,nc
uc(1,jc)=uf(1,2*jc-1)
uc(nc,jc)=uf(2*nc-1,2*jc-1)

enddo 14

return
END

SUBROUTINE interp(uf,uc,nf)
INTEGER nf
DOUBLE PRECISION uc(nf/2+1,nf/2+1),uf(nf,nf)
INTEGER ic,if,jc,jf,nc

Coarse-to-fine prolongation by bilinear interpolation. nf is the fine-grid dimension. The
coarse-grid solution is input as uc(1:nc,1:nc), where nc = nf/2 + 1. The fine-grid
solution is returned in uf(1:nf,1:nf).

nc=nf/2+1
do 12 jc=1,nc Do elements that are copies.

jf=2*jc-1
do 11 ic=1,nc

uf(2*ic-1,jf)=uc(ic,jc)
enddo 11

enddo 12

do 14 jf=1,nf,2 Do odd-numbered columns, interpolating ver-
tically.do 13 if=2,nf-1,2

uf(if,jf)=.5d0*(uf(if+1,jf)+uf(if-1,jf))
enddo 13

enddo 14

do 16 jf=2,nf-1,2 Do even-numbered columns, interpolating hor-
izontally.do 15 if=1,nf

uf(if,jf)=.5d0*(uf(if,jf+1)+uf(if,jf-1))
enddo 15

enddo 16

return
END

SUBROUTINE addint(uf,uc,res,nf)
INTEGER nf
DOUBLE PRECISION res(nf,nf),uc(nf/2+1,nf/2+1),uf(nf,nf)

C USES interp
Does coarse-to-fine interpolation and adds result to uf. nf is the fine-grid dimension. The
coarse-grid solution is input as uc(1:nc,1:nc), where nc = nf/2 + 1. The fine-grid
solution is returned in uf(1:nf,1:nf). res(1:nf,1:nf) is used for temporary storage.

INTEGER i,j
call interp(res,uc,nf)
do 12 j=1,nf

do 11 i=1,nf
uf(i,j)=uf(i,j)+res(i,j)

enddo 11

enddo 12

return
END

872 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE slvsml(u,rhs)
DOUBLE PRECISION rhs(3,3),u(3,3)

C USES fill0
Solution of the model problem on the coarsest grid, where h = 1

2
. The right-hand side is

input in rhs(1:3,1:3) and the solution is returned in u(1:3,1:3).
DOUBLE PRECISION h
call fill0(u,3)
h=.5d0
u(2,2)=-h*h*rhs(2,2)/4.d0
return
END

SUBROUTINE relax(u,rhs,n)
INTEGER n
DOUBLE PRECISION rhs(n,n),u(n,n)

Red-black Gauss-Seidel relaxation for model problem. The current value of the solution
u(1:n,1:n) is updated, using the right-hand side function rhs(1:n,1:n).

INTEGER i,ipass,isw,j,jsw
DOUBLE PRECISION h,h2
h=1.d0/(n-1)
h2=h*h
jsw=1
do 13 ipass=1,2 Red and black sweeps.

isw=jsw
do 12 j=2,n-1

do 11 i=isw+1,n-1,2 Gauss-Seidel formula.
u(i,j)=0.25d0*(u(i+1,j)+u(i-1,j)+u(i,j+1)

* +u(i,j-1)-h2*rhs(i,j))
enddo 11

isw=3-isw
enddo 12

jsw=3-jsw
enddo 13

return
END

SUBROUTINE resid(res,u,rhs,n)
INTEGER n
DOUBLE PRECISION res(n,n),rhs(n,n),u(n,n)

Returns minus the residual for the model problem. Input quantities are u(1:n,1:n) and
rhs(1:n,1:n), while res(1:n,1:n) is returned.

INTEGER i,j
DOUBLE PRECISION h,h2i
h=1.d0/(n-1)
h2i=1.d0/(h*h)
do 12 j=2,n-1 Interior points.

do 11 i=2,n-1
res(i,j)=-h2i*(u(i+1,j)+u(i-1,j)+u(i,j+1)+u(i,j-1)-

* 4.d0*u(i,j))+rhs(i,j)
enddo 11

enddo 12

do 13 i=1,n Boundary points.
res(i,1)=0.d0
res(i,n)=0.d0
res(1,i)=0.d0
res(n,i)=0.d0

enddo 13

return
END

19.6 Multigrid Methods for Boundary Value Problems 873

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE copy(aout,ain,n)
INTEGER n
DOUBLE PRECISION ain(n,n),aout(n,n)

Copies ain(1:n,1:n) to aout(1:n,1:n).
INTEGER i,j
do 12 i=1,n

do 11 j=1,n
aout(j,i)=ain(j,i)

enddo 11

enddo 12

return
END

SUBROUTINE fill0(u,n)
INTEGER n
DOUBLE PRECISION u(n,n)

Fills u(1:n,1:n) with zeros.
INTEGER i,j
do 12 j=1,n

do 11 i=1,n
u(i,j)=0.d0

enddo 11

enddo 12

return
END

FUNCTION maloc(len)
INTEGER maloc,len,NG,MEMLEN
PARAMETER (NG=5,MEMLEN=13*2**(2*NG)/3+14*2**NG+8*NG-100/3) for mglin

C PARAMETER (NG=5,MEMLEN=17*2**(2*NG)/3+18*2**NG+10*NG-86/3) for mgfas, N.B.!
INTEGER mem
DOUBLE PRECISION z
COMMON /memory/ z(MEMLEN),mem

Dynamical storage allocation. Returns integer pointer to the starting position for len array
elements in the array z. The preceding array element is filled with the value of len, and
the variable mem is updated to point to the last element of z that has been used.

if (mem+len+1.gt.MEMLEN) pause ’insufficient memory in maloc’
z(mem+1)=len
maloc=mem+2
mem=mem+len+1
return
END

The routine mglin is written for clarity, not maximum efficiency, so that it is
easy to modify. Several simple changes will speed up the execution time:

• The defect dh vanishes identically at all black mesh points after a red-black
Gauss-Seidel step. Thus dH = Rdh for half-weighting reduces to simply
copying half the defect from the fine grid to the corresponding coarse-grid
point. The calls to resid followed by rstrct in the first part of the
V-cycle can be replaced by a routine that loops only over the coarse grid,
filling it with half the defect.

• Similarly, the quantity ũnew
h = ũh + P ṽH need not be computed at red

mesh points, since they will immediately be redefined in the subsequent
Gauss-Seidel sweep. This means that addint need only loop over black
points.

874 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

• You can speed up relax in several ways. First, you can have a special
form when the initial guess is zero, and omit the routine fill0. Next, you
can store h2fh on the various grids and save a multiplication. Finally, it
is possible to save an addition in the Gauss-Seidel formula by rewriting
it with intermediate variables.

• On typical problems, mglin with ncycle = 1 will return a solution with
the iteration error bigger than the truncation error for the given size of h.
To knock the error down to the size of the truncation error, you have to
set ncycle = 2 or, more cheaply, npre = 2. A more efficient way turns
out to be to use a higher-order P in (19.6.20) than the linear interpolation
used in the V-cycle.

Implementing all the above features typically gives up to a factor of two
improvement in execution time and is certainly worthwhile in a production code.

Nonlinear Multigrid: The FAS Algorithm

Now turn to solving a nonlinear elliptic equation, which we write symbolically as

L(u) = 0 (19.6.21)

Any explicit source term has been moved to the left-hand side. Suppose equation (19.6.21)
is suitably discretized:

Lh(uh) = 0 (19.6.22)

We will see below that in the multigrid algorithm we will have to consider equations where a
nonzero right-hand side is generated during the course of the solution:

Lh(uh) = fh (19.6.23)

One way of solving nonlinear problems with multigrid is to use Newton’s method, which
produces linear equations for the correction term at each iteration. We can then use linear
multigrid to solve these equations. A great strength of the multigrid idea, however, is that it
can be applied directly to nonlinear problems. All we need is a suitable nonlinear relaxation
method to smooth the errors, plus a procedure for approximating corrections on coarser grids.
This direct approach is Brandt’s Full Approximation Storage Algorithm (FAS). No nonlinear
equations need be solved, except perhaps on the coarsest grid.

To develop the nonlinear algorithm, suppose we have a relaxation procedure that can
smooth the residual vector as we did in the linear case. Then we can seek a smooth correction
vh to solve (19.6.23):

Lh(ũh + vh) = fh (19.6.24)

To find vh, note that

Lh(ũh + vh) −Lh(ũh) = fh − Lh(ũh)

= −dh
(19.6.25)

The right-hand side is smooth after a few nonlinear relaxation sweeps. Thus we can transfer
the left-hand side to a coarse grid:

LH(uH) −LH(Rũh) = −Rdh (19.6.26)

that is, we solve

LH(uH) = LH(Rũh) −Rdh (19.6.27)

on the coarse grid. (This is how nonzero right-hand sides appear.) Suppose the approximate
solution is ũH . Then the coarse-grid correction is

ṽH = ũH −Rũh (19.6.28)

19.6 Multigrid Methods for Boundary Value Problems 875

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

and
ũnew
h = ũh + P(ũH −Rũh) (19.6.29)

Note thatPR 6= 1 in general, so ũnew
h 6= PũH . This is a key point: In equation (19.6.29) the

interpolation error comes only from the correction, not from the full solution ũH .
Equation (19.6.27) shows that one is solving for the full approximation uH , not just the

error as in the linear algorithm. This is the origin of the name FAS.
The FAS multigrid algorithm thus looks very similar to the linear multigrid algorithm.

The only differences are that both the defect dh and the relaxed approximation uh have to be
restricted to the coarse grid, where now it is equation (19.6.27) that is solved by recursive
invocation of the algorithm. However, instead of implementing the algorithm this way, we
will first describe the so-called dual viewpoint, which leads to a powerful alternative way
of looking at the multigrid idea.

The dual viewpoint considers the local truncation error, defined as

τ ≡ Lh(u) − fh (19.6.30)

where u is the exact solution of the oiginal continuum equation. If we rewrite this as

Lh(u) = fh + τ (19.6.31)

we see that τ can be regarded as the correction to fh so that the solution of the fine-grid
equation will be the exact solution u.

Now consider the relative truncation error τh, which is defined on the H-grid relative
to the h-grid:

τh ≡ LH (Ruh) −RLh(uh) (19.6.32)

Since Lh(uh) = fh, this can be rewritten as

LH(uH) = fH + τh (19.6.33)

In other words, we can think of τh as the correction to fH that makes the solution of the
coarse-grid equation equal to the fine-grid solution. Of course we cannot compute τh, but we
do have an approximation to it from using ũh in equation (19.6.32):

τh ' τ̃h ≡ LH (Rũh)−RLh(ũh) (19.6.34)

Replacing τh by τ̃h in equation (19.6.33) gives

LH(uH) = LH(Rũh) −Rdh (19.6.35)

which is just the coarse-grid equation (19.6.27)!
Thus we see that there are two complementary viewpoints for the relation between

coarse and fine grids:

• Coarse grids are used to accelerate the convergence of the smooth components
of the fine-grid residuals.
• Fine grids are used to compute correction terms to the coarse-grid equations,

yielding fine-grid accuracy on the coarse grids.

One benefit of this new viewpoint is that it allows us to derive a natural stopping criterion
for a multigrid iteration. Normally the criterion would be

‖dh‖ ≤ ε (19.6.36)

and the question is how to choose ε. There is clearly no benefit in iterating beyond the
point when the remaining error is dominated by the local truncation error τ . The computable
quantity is τ̃h. What is the relation between τ and τ̃h? For the typical case of a second-order
accurate differencing scheme,

τ = Lh(u) −Lh(uh) = h2τ2(x, y) + · · · (19.6.37)

876 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Assume the solution satisfies uh = u + h2u2(x, y) + · · · . Then, assuming R is of high
enough order that we can neglect its effect, equation (19.6.32) gives

τh ' LH(u + h2u2)− Lh(u + h2u2)

= LH(u) −Lh(u) + h2[L′H(u2) −L′h(u2)] + · · ·

= (H2 − h2)τ2 +O(h4)

(19.6.38)

For the usual case of H = 2h we therefore have

τ ' 1
3τh '

1
3 τ̃h (19.6.39)

The stopping criterion is thus equation (19.6.36) with

ε = α‖τ̃h‖, α ∼ 1
3

(19.6.40)

We have one remaining task before implementing our nonlinear multigrid algorithm:
choosing a nonlinear relaxation scheme. Once again, your first choice should probably be
the nonlinear Gauss-Seidel scheme. If the discretized equation (19.6.23) is written with
some choice of ordering as

Li(u1, . . . , uN) = fi, i = 1, . . . , N (19.6.41)

then the nonlinear Gauss-Seidel schemes solves

Li(u1, . . . , ui−1, u
new
i , ui+1, . . . , uN) = fi (19.6.42)

forunew
i . As usualnewu’s replace old u’s as soon as they have been computed. Often equation

(19.6.42) is linear in unew
i , since the nonlinear terms are discretized by means of its neighbors.

If this is not the case, we replace equation (19.6.42) by one step of a Newton iteration:

unew
i = uold

i −
Li(u

old
i) − fi

∂Li(uold
i)/∂ui

(19.6.43)

For example, consider the simple nonlinear equation

∇2u + u2 = ρ (19.6.44)

In two-dimensional notation, we have

L(ui,j) = (ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j)/h
2 + u2

i,j − ρi,j = 0 (19.6.45)

Since

∂L
∂ui,j

= −4/h2 + 2ui,j (19.6.46)

the Newton Gauss-Seidel iteration is

unew
i,j = ui,j −

L(ui,j)

−4/h2 + 2ui,j
(19.6.47)

Here is a routine mgfas that solves equation (19.6.44) using the Full Multigrid Algorithm
and the FAS scheme. Restriction and prolongation are done as in mglin. We have included
the convergence test based on equation (19.6.40). A successfulmultigrid solution of a problem
should aim to satisfy this condition with the maximum number of V-cycles, maxcyc, equal
to 1 or 2. The routine mgfas uses the same subroutines copy, interp, maloc, and rstrct
as mglin, but with a larger storage requirement MEMLEN in maloc (be sure to change the
PARAMETER statement in that routine, as indicated by the commented line).

19.6 Multigrid Methods for Boundary Value Problems 877

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE mgfas(u,n,maxcyc)
INTEGER maxcyc,n,NPRE,NPOST,NG,MEMLEN
DOUBLE PRECISION u(n,n),ALPHA
PARAMETER (NG=5,MEMLEN=17*2**(2*NG)/3+18*2**NG+10*NG-86/3)
PARAMETER (NPRE=1,NPOST=1,ALPHA=.33d0)

C USES anorm2,copy,interp,lop,maloc,matadd,matsub,relax2,rstrct,slvsm2
Full Multigrid Algorithm for FAS solution of nonlinear elliptic equation, here equation
(19.6.44). On input u(1:n,1:n) contains the right-hand side ρ, while on output it re-
turns the solution. The dimension n is related to the number of grid levels used in the
solution, NG below, by n = 2**NG + 1. maxcyc is the maximum number of V-cycles to
be used at each level.
Parameters: NG is the number of grid levels used; MEMLEN is the maximum amount of
memory that can be allocated by calls to maloc; NPRE and NPOST are the number of
relaxation sweeps before and after the coarse-grid correction is computed; ALPHA relates
the estimated truncation error to the norm of the residual.

INTEGER j,jcycle,jj,jm1,jpost,jpre,mem,nf,ngrid,nn,irho(NG),
* irhs(NG),itau(NG),itemp(NG),iu(NG),maloc

DOUBLE PRECISION res,trerr,z,anorm2
COMMON /memory/ z(MEMLEN),mem Storage for grid functions is allocated by maloc

from array z.mem=0
nn=n/2+1
ngrid=NG-1
irho(ngrid)=maloc(nn**2) Allocate storage for r.h.s. on grid NG− 1,
call rstrct(z(irho(ngrid)),u,nn) and fill it by restricting from the fine grid.

1 if (nn.gt.3) then Similarly allocate storage and fill r.h.s. on all
coarse grids.nn=nn/2+1

ngrid=ngrid-1
irho(ngrid)=maloc(nn**2)
call rstrct(z(irho(ngrid)),z(irho(ngrid+1)),nn)

goto 1
endif
nn=3
iu(1)=maloc(nn**2)
irhs(1)=maloc(nn**2)
itau(1)=maloc(nn**2)
itemp(1)=maloc(nn**2)
call slvsm2(z(iu(1)),z(irho(1))) Initial solution on coarsest grid.
ngrid=NG
do 16 j=2,ngrid Nested iteration loop.

nn=2*nn-1
iu(j)=maloc(nn**2)
irhs(j)=maloc(nn**2)
itau(j)=maloc(nn**2)
itemp(j)=maloc(nn**2)
call interp(z(iu(j)),z(iu(j-1)),nn) Interpolate from coarse grid to next finer grid.
if (j.ne.ngrid) then

call copy(z(irhs(j)),z(irho(j)),nn) Set up r.h.s.
else

call copy(z(irhs(j)),u,nn)
endif
do 15 jcycle=1,maxcyc V-cycle loop.
nf=nn
do 12 jj=j,2,-1 Downward stoke of the V.

do 11 jpre=1,NPRE Pre-smoothing.
call relax2(z(iu(jj)),z(irhs(jj)),nf)
enddo 11

call lop(z(itemp(jj)),z(iu(jj)),nf) Lh(ũh).
nf=nf/2+1
jm1=jj-1
call rstrct(z(itemp(jm1)),z(itemp(jj)),nf) RLh(ũh).
call rstrct(z(iu(jm1)),z(iu(jj)),nf) Rũh .
call lop(z(itau(jm1)),z(iu(jm1)),nf) LH (Rũh) stored temporarily in τ̃h.
call matsub(z(itau(jm1)),z(itemp(jm1)),z(itau(jm1)),nf) Form τ̃h.
if(jj.eq.j)trerr=ALPHA*anorm2(z(itau(jm1)),nf) Estimate truncation error τ .

878 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

call rstrct(z(irhs(jm1)),z(irhs(jj)),nf) fH .
call matadd(z(irhs(jm1)),z(itau(jm1)),z(irhs(jm1)),nf) fH + τ̃h.

enddo 12

call slvsm2(z(iu(1)),z(irhs(1))) Bottom of V: Solve on coarsest grid.
nf=3
do 14 jj=2,j Upward stroke of V.

jm1=jj-1
call rstrct(z(itemp(jm1)),z(iu(jj)),nf) Rũh .
call matsub(z(iu(jm1)),z(itemp(jm1)),z(itemp(jm1)),nf) ũH −Rũh.
nf=2*nf-1
call interp(z(itau(jj)),z(itemp(jm1)),nf) P(ũH−Rũh) stored in τ̃h.
call matadd(z(iu(jj)),z(itau(jj)),z(iu(jj)),nf) Form ũnew

h .
do 13 jpost=1,NPOST Post-smoothing.
call relax2(z(iu(jj)),z(irhs(jj)),nf)
enddo 13

enddo 14

call lop(z(itemp(j)),z(iu(j)),nf) Form residual ‖dh‖.
call matsub(z(itemp(j)),z(irhs(j)),z(itemp(j)),nf)
res=anorm2(z(itemp(j)),nf)
if(res.lt.trerr)goto 2 No more V-cycles needed if residual small

enough.enddo 15

2 continue
enddo 16

call copy(u,z(iu(ngrid)),n) Return solution in u.
return
END

SUBROUTINE relax2(u,rhs,n)
INTEGER n
DOUBLE PRECISION rhs(n,n),u(n,n)

Red-black Gauss-Seidel relaxation for equation (19.6.44). The current value of the solution
u(1:n,1:n) is updated, using the right-hand side function rhs(1:n,1:n).

INTEGER i,ipass,isw,j,jsw
DOUBLE PRECISION foh2,h,h2i,res
h=1.d0/(n-1)
h2i=1.d0/(h*h)
foh2=-4.d0*h2i
jsw=1
do 13 ipass=1,2 Red and black sweeps.

isw=jsw
do 12 j=2,n-1

do 11 i=isw+1,n-1,2
res=h2i*(u(i+1,j)+u(i-1,j)+u(i,j+1)+u(i,j-1)-

* 4.d0*u(i,j))+u(i,j)**2-rhs(i,j)
u(i,j)=u(i,j)-res/(foh2+2.d0*u(i,j)) Newton Gauss-Seidel formula.

enddo 11

isw=3-isw
enddo 12

jsw=3-jsw
enddo 13

return
END

SUBROUTINE slvsm2(u,rhs)
DOUBLE PRECISION rhs(3,3),u(3,3)

C USES fill0
Solution of equation (19.6.44) on the coarsest grid, where h = 1

2
. The right-hand side is

input in rhs(1:3,1:3) and the solution is returned in u(1:3,1:3).
DOUBLE PRECISION disc,fact,h
call fill0(u,3)
h=.5d0
fact=2.d0/h**2
disc=sqrt(fact**2+rhs(2,2))

19.6 Multigrid Methods for Boundary Value Problems 879

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

u(2,2)=-rhs(2,2)/(fact+disc)
return
END

SUBROUTINE lop(out,u,n)
INTEGER n
DOUBLE PRECISION out(n,n),u(n,n)

Given u(1:n,1:n), returns Lh(ũh) for equation (19.6.44) in out(1:n,1:n).
INTEGER i,j
DOUBLE PRECISION h,h2i
h=1.d0/(n-1)
h2i=1.d0/(h*h)
do 12 j=2,n-1 Interior points.

do 11 i=2,n-1
out(i,j)=h2i*(u(i+1,j)+u(i-1,j)+u(i,j+1)+u(i,j-1)-

* 4.d0*u(i,j))+u(i,j)**2
enddo 11

enddo 12

do 13 i=1,n Boundary points.
out(i,1)=0.d0
out(i,n)=0.d0
out(1,i)=0.d0
out(n,i)=0.d0

enddo 13

return
END

SUBROUTINE matadd(a,b,c,n)
INTEGER n
DOUBLE PRECISION a(n,n),b(n,n),c(n,n)

Adds a(1:n,1:n) to b(1:n,1:n) and returns result in c(1:n,1:n).
INTEGER i,j
do 12 j=1,n

do 11 i=1,n
c(i,j)=a(i,j)+b(i,j)

enddo 11

enddo 12

return
END

SUBROUTINE matsub(a,b,c,n)
INTEGER n
DOUBLE PRECISION a(n,n),b(n,n),c(n,n)

Subtracts b(1:n,1:n) from a(1:n,1:n) and returns result in c(1:n,1:n).
INTEGER i,j
do 12 j=1,n

do 11 i=1,n
c(i,j)=a(i,j)-b(i,j)

enddo 11

enddo 12

return
END

DOUBLE PRECISION FUNCTION anorm2(a,n)
INTEGER n
DOUBLE PRECISION a(n,n)

Returns the Euclidean norm of the matrix a(1:n,1:n).
INTEGER i,j
DOUBLE PRECISION sum
sum=0.d0
do 12 j=1,n

do 11 i=1,n

880 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

sum=sum+a(i,j)**2
enddo 11

enddo 12

anorm2=sqrt(sum)/n
return
END

CITED REFERENCES AND FURTHER READING:

Brandt, A. 1977, Mathematics of Computation, vol. 31, pp. 333–390. [1]

Hackbusch, W. 1985, Multi-Grid Methods and Applications (New York: Springer-Verlag). [2]

Stuben, K., and Trottenberg, U. 1982, in Multigrid Methods, W. Hackbusch and U. Trottenberg,
eds. (Springer Lecture Notes in Mathematics No. 960) (New York: Springer-Verlag), pp. 1–
176. [3]

Brandt, A. 1982, in Multigrid Methods, W. Hackbusch and U. Trottenberg, eds. (Springer Lecture
Notes in Mathematics No. 960) (New York: Springer-Verlag). [4]

Baker, L. 1991, More C Tools for Scientists and Engineers (New York: McGraw-Hill).

Briggs, W.L. 1987, A Multigrid Tutorial (Philadelphia: S.I.A.M.).

Jespersen, D. 1984, Multrigrid Methods for Partial Differential Equations (Washington: Mathe-
matical Association of America).

McCormick, S.F. (ed.) 1988, Multigrid Methods: Theory, Applications, and Supercomputing (New
York: Marcel Dekker).

Hackbusch, W., and Trottenberg, U. (eds.) 1991, Multigrid Methods III (Boston: Birkhauser).

Wesseling, P. 1992, An Introduction to Multigrid Methods (New York: Wiley).

